//! Ported from musl, which is licensed under the MIT license: //! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT //! //! https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c //! https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c const std = @import("std"); const builtin = @import("builtin"); const math = std.math; const expect = std.testing.expect; const maxInt = std.math.maxInt; const arch = builtin.cpu.arch; const common = @import("common.zig"); pub const panic = common.panic; comptime { @export(__log2h, .{ .name = "__log2h", .linkage = common.linkage }); @export(log2f, .{ .name = "log2f", .linkage = common.linkage }); @export(log2, .{ .name = "log2", .linkage = common.linkage }); @export(__log2x, .{ .name = "__log2x", .linkage = common.linkage }); const log2q_sym_name = if (common.want_ppc_abi) "log2f128" else "log2q"; @export(log2q, .{ .name = log2q_sym_name, .linkage = common.linkage }); @export(log2l, .{ .name = "log2l", .linkage = common.linkage }); } pub fn __log2h(a: f16) callconv(.C) f16 { // TODO: more efficient implementation return @floatCast(f16, log2f(a)); } pub fn log2f(x_: f32) callconv(.C) f32 { const ivln2hi: f32 = 1.4428710938e+00; const ivln2lo: f32 = -1.7605285393e-04; const Lg1: f32 = 0xaaaaaa.0p-24; const Lg2: f32 = 0xccce13.0p-25; const Lg3: f32 = 0x91e9ee.0p-25; const Lg4: f32 = 0xf89e26.0p-26; var x = x_; var u = @bitCast(u32, x); var ix = u; var k: i32 = 0; // x < 2^(-126) if (ix < 0x00800000 or ix >> 31 != 0) { // log(+-0) = -inf if (ix << 1 == 0) { return -math.inf(f32); } // log(-#) = nan if (ix >> 31 != 0) { return math.nan(f32); } k -= 25; x *= 0x1.0p25; ix = @bitCast(u32, x); } else if (ix >= 0x7F800000) { return x; } else if (ix == 0x3F800000) { return 0; } // x into [sqrt(2) / 2, sqrt(2)] ix += 0x3F800000 - 0x3F3504F3; k += @intCast(i32, ix >> 23) - 0x7F; ix = (ix & 0x007FFFFF) + 0x3F3504F3; x = @bitCast(f32, ix); const f = x - 1.0; const s = f / (2.0 + f); const z = s * s; const w = z * z; const t1 = w * (Lg2 + w * Lg4); const t2 = z * (Lg1 + w * Lg3); const R = t2 + t1; const hfsq = 0.5 * f * f; var hi = f - hfsq; u = @bitCast(u32, hi); u &= 0xFFFFF000; hi = @bitCast(f32, u); const lo = f - hi - hfsq + s * (hfsq + R); return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k); } pub fn log2(x_: f64) callconv(.C) f64 { const ivln2hi: f64 = 1.44269504072144627571e+00; const ivln2lo: f64 = 1.67517131648865118353e-10; const Lg1: f64 = 6.666666666666735130e-01; const Lg2: f64 = 3.999999999940941908e-01; const Lg3: f64 = 2.857142874366239149e-01; const Lg4: f64 = 2.222219843214978396e-01; const Lg5: f64 = 1.818357216161805012e-01; const Lg6: f64 = 1.531383769920937332e-01; const Lg7: f64 = 1.479819860511658591e-01; var x = x_; var ix = @bitCast(u64, x); var hx = @intCast(u32, ix >> 32); var k: i32 = 0; if (hx < 0x00100000 or hx >> 31 != 0) { // log(+-0) = -inf if (ix << 1 == 0) { return -math.inf(f64); } // log(-#) = nan if (hx >> 31 != 0) { return math.nan(f64); } // subnormal, scale x k -= 54; x *= 0x1.0p54; hx = @intCast(u32, @bitCast(u64, x) >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 and ix << 32 == 0) { return 0; } // x into [sqrt(2) / 2, sqrt(2)] hx += 0x3FF00000 - 0x3FE6A09E; k += @intCast(i32, hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF); x = @bitCast(f64, ix); const f = x - 1.0; const hfsq = 0.5 * f * f; const s = f / (2.0 + f); const z = s * s; const w = z * z; const t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); const R = t2 + t1; // hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f) var hi = f - hfsq; var hii = @bitCast(u64, hi); hii &= @as(u64, maxInt(u64)) << 32; hi = @bitCast(f64, hii); const lo = f - hi - hfsq + s * (hfsq + R); var val_hi = hi * ivln2hi; var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi; // spadd(val_hi, val_lo, y) const y = @intToFloat(f64, k); const ww = y + val_hi; val_lo += (y - ww) + val_hi; val_hi = ww; return val_lo + val_hi; } pub fn __log2x(a: f80) callconv(.C) f80 { // TODO: more efficient implementation return @floatCast(f80, log2q(a)); } pub fn log2q(a: f128) callconv(.C) f128 { // TODO: more correct implementation return log2(@floatCast(f64, a)); } pub fn log2l(x: c_longdouble) callconv(.C) c_longdouble { switch (@typeInfo(c_longdouble).Float.bits) { 16 => return __log2h(x), 32 => return log2f(x), 64 => return log2(x), 80 => return __log2x(x), 128 => return log2q(x), else => @compileError("unreachable"), } } test "log2_32" { const epsilon = 0.000001; try expect(math.approxEqAbs(f32, log2f(0.2), -2.321928, epsilon)); try expect(math.approxEqAbs(f32, log2f(0.8923), -0.164399, epsilon)); try expect(math.approxEqAbs(f32, log2f(1.5), 0.584962, epsilon)); try expect(math.approxEqAbs(f32, log2f(37.45), 5.226894, epsilon)); try expect(math.approxEqAbs(f32, log2f(123123.234375), 16.909744, epsilon)); } test "log2_64" { const epsilon = 0.000001; try expect(math.approxEqAbs(f64, log2(0.2), -2.321928, epsilon)); try expect(math.approxEqAbs(f64, log2(0.8923), -0.164399, epsilon)); try expect(math.approxEqAbs(f64, log2(1.5), 0.584962, epsilon)); try expect(math.approxEqAbs(f64, log2(37.45), 5.226894, epsilon)); try expect(math.approxEqAbs(f64, log2(123123.234375), 16.909744, epsilon)); } test "log2_32.special" { try expect(math.isPositiveInf(log2f(math.inf(f32)))); try expect(math.isNegativeInf(log2f(0.0))); try expect(math.isNan(log2f(-1.0))); try expect(math.isNan(log2f(math.nan(f32)))); } test "log2_64.special" { try expect(math.isPositiveInf(log2(math.inf(f64)))); try expect(math.isNegativeInf(log2(0.0))); try expect(math.isNan(log2(-1.0))); try expect(math.isNan(log2(math.nan(f64)))); }