zig/lib/compiler_rt/divxf3.zig

211 lines
8.5 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const arch = builtin.cpu.arch;
const common = @import("common.zig");
const normalize = common.normalize;
const wideMultiply = common.wideMultiply;
pub const panic = common.panic;
comptime {
@export(&__divxf3, .{ .name = "__divxf3", .linkage = common.linkage, .visibility = common.visibility });
}
pub fn __divxf3(a: f80, b: f80) callconv(.C) f80 {
const T = f80;
const Z = std.meta.Int(.unsigned, @bitSizeOf(T));
const significandBits = std.math.floatMantissaBits(T);
const fractionalBits = std.math.floatFractionalBits(T);
const exponentBits = std.math.floatExponentBits(T);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const exponentBias = (maxExponent >> 1);
const integerBit = (@as(Z, 1) << fractionalBits);
const quietBit = integerBit >> 1;
const significandMask = (@as(Z, 1) << significandBits) - 1;
const absMask = signBit - 1;
const qnanRep = @as(Z, @bitCast(std.math.nan(T))) | quietBit;
const infRep: Z = @bitCast(std.math.inf(T));
const aExponent: u32 = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent);
const bExponent: u32 = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent);
const quotientSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit;
var aSignificand: Z = @as(Z, @bitCast(a)) & significandMask;
var bSignificand: Z = @as(Z, @bitCast(b)) & significandMask;
var scale: i32 = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
const aAbs: Z = @as(Z, @bitCast(a)) & absMask;
const bAbs: Z = @as(Z, @bitCast(b)) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep) {
return @bitCast(qnanRep);
}
// infinity / anything else = +/- infinity
else {
return @bitCast(aAbs | quotientSign);
}
}
// anything else / infinity = +/- 0
if (bAbs == infRep) return @bitCast(quotientSign);
if (aAbs == 0) {
// zero / zero = NaN
if (bAbs == 0) {
return @bitCast(qnanRep);
}
// zero / anything else = +/- zero
else {
return @bitCast(quotientSign);
}
}
// anything else / zero = +/- infinity
if (bAbs == 0) return @bitCast(infRep | quotientSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < integerBit) scale +%= normalize(T, &aSignificand);
if (bAbs < integerBit) scale -%= normalize(T, &bSignificand);
}
var quotientExponent: i32 = @as(i32, @bitCast(aExponent -% bExponent)) +% scale;
// Align the significand of b as a Q63 fixed-point number in the range
// [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
const q63b: u64 = @intCast(bSignificand);
var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b;
// 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
//
// This doubles the number of correct binary digits in the approximation
// with each iteration.
var correction64: u64 = undefined;
correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
// The reciprocal may have overflowed to zero if the upper half of b is
// exactly 1.0. This would sabatoge the full-width final stage of the
// computation that follows, so we adjust the reciprocal down by one bit.
recip64 -%= 1;
// We need to perform one more iteration to get us to 112 binary digits;
// The last iteration needs to happen with extra precision.
// NOTE: This operation is equivalent to __multi3, which is not implemented
// in some architechures
var reciprocal: u128 = undefined;
var correction: u128 = undefined;
var dummy: u128 = undefined;
wideMultiply(u128, recip64, q63b, &dummy, &correction);
correction = -%correction;
const cHi: u64 = @truncate(correction >> 64);
const cLo: u64 = @truncate(correction);
var r64cH: u128 = undefined;
var r64cL: u128 = undefined;
wideMultiply(u128, recip64, cHi, &dummy, &r64cH);
wideMultiply(u128, recip64, cLo, &dummy, &r64cL);
reciprocal = r64cH + (r64cL >> 64);
// Adjust the final 128-bit reciprocal estimate downward to ensure that it
// is strictly smaller than the infinitely precise exact reciprocal. Because
// the computation of the Newton-Raphson step is truncating at every step,
// this adjustment is small; most of the work is already done.
reciprocal -%= 2;
// The numerical reciprocal is accurate to within 2^-112, lies in the
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
// in Q127 with the following properties:
//
// 1. q < a/b
// 2. q is in the interval [0.5, 2.0)
// 3. The error in q is bounded away from 2^-63 (actually, we have
// many bits to spare, but this is all we need).
// We need a 128 x 128 multiply high to compute q.
var quotient128: u128 = undefined;
var quotientLo: u128 = undefined;
wideMultiply(u128, aSignificand << 2, reciprocal, &quotient128, &quotientLo);
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// Right shift the quotient if it falls in the [1,2) range and adjust the
// exponent accordingly.
const quotient: u64 = if (quotient128 < (integerBit << 1)) b: {
quotientExponent -= 1;
break :b @intCast(quotient128);
} else @intCast(quotient128 >> 1);
// We are going to compute a residual of the form
//
// r = a - q*b
//
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
//
// If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
const residual: u64 = -%(quotient *% q63b);
const writtenExponent = quotientExponent + exponentBias;
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return @bitCast(infRep | quotientSign);
} else if (writtenExponent < 1) {
if (writtenExponent == 0) {
// Check whether the rounded result is normal.
if (residual > (bSignificand >> 1)) { // round
if (quotient == (integerBit - 1)) // If the rounded result is normal, return it
return @bitCast(@as(Z, @bitCast(std.math.floatMin(T))) | quotientSign);
}
}
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return @bitCast(quotientSign);
} else {
const round = @intFromBool(residual > (bSignificand >> 1));
// Insert the exponent
var absResult = quotient | (@as(Z, @intCast(writtenExponent)) << significandBits);
// Round
absResult +%= round;
// Insert the sign and return
return @bitCast(absResult | quotientSign | integerBit);
}
}
test {
_ = @import("divxf3_test.zig");
}