zig/lib/compiler_rt/trunctfxf2.zig

69 lines
2.8 KiB
Zig

const math = @import("std").math;
const common = @import("./common.zig");
const trunc_f80 = @import("./truncf.zig").trunc_f80;
pub const panic = common.panic;
comptime {
@export(&__trunctfxf2, .{ .name = "__trunctfxf2", .linkage = common.linkage, .visibility = common.visibility });
}
pub fn __trunctfxf2(a: f128) callconv(.C) f80 {
const src_sig_bits = math.floatMantissaBits(f128);
const dst_sig_bits = math.floatMantissaBits(f80) - 1; // -1 for the integer bit
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const src_bits = @typeInfo(f128).float.bits;
const src_exp_bits = src_bits - src_sig_bits - 1;
const src_inf_exp = 0x7FFF;
const src_inf = src_inf_exp << src_sig_bits;
const src_sign_mask = 1 << (src_sig_bits + src_exp_bits);
const src_abs_mask = src_sign_mask - 1;
const round_mask = (1 << (src_sig_bits - dst_sig_bits)) - 1;
const halfway = 1 << (src_sig_bits - dst_sig_bits - 1);
// Break a into a sign and representation of the absolute value
const a_rep = @as(u128, @bitCast(a));
const a_abs = a_rep & src_abs_mask;
const sign: u16 = if (a_rep & src_sign_mask != 0) 0x8000 else 0;
const integer_bit = 1 << 63;
var res: math.F80 = undefined;
if (a_abs > src_inf) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
res.exp = 0x7fff;
res.fraction = 0x8000000000000000;
res.fraction |= @as(u64, @truncate(a_abs >> (src_sig_bits - dst_sig_bits)));
} else {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding, adding the explicit integer bit, and adjusting the exponent
res.fraction = @as(u64, @truncate(a_abs >> (src_sig_bits - dst_sig_bits))) | integer_bit;
res.exp = @truncate(a_abs >> src_sig_bits);
const round_bits = a_abs & round_mask;
if (round_bits > halfway) {
// Round to nearest
const ov = @addWithOverflow(res.fraction, 1);
res.fraction = ov[0];
res.exp += ov[1];
res.fraction |= @as(u64, ov[1]) << 63; // Restore integer bit after carry
} else if (round_bits == halfway) {
// Ties to even
const ov = @addWithOverflow(res.fraction, res.fraction & 1);
res.fraction = ov[0];
res.exp += ov[1];
res.fraction |= @as(u64, ov[1]) << 63; // Restore integer bit after carry
}
if (res.exp == 0) res.fraction &= ~@as(u64, integer_bit); // Remove integer bit for de-normals
}
res.exp |= sign;
return res.toFloat();
}