mirror of
https://github.com/ziglang/zig.git
synced 2024-11-26 15:12:31 +00:00
4a77c7f258
The core functionalities are now in two general functions `extremeInSubtreeOnDirection()` and `nextOnDirection()` so all the other traversing functions (`getMin()`, `getMax()`, and `InorderIterator`) are all just trivial calls to these core functions. The added two functions `Node.next()` and `Node.prev()` are also just trivial calls to these. * std.Treap traversal direction: use u1 instead of usize. * Treap: fix getMin() and getMax(), and add tests for them.
683 lines
24 KiB
Zig
683 lines
24 KiB
Zig
const std = @import("std.zig");
|
|
const assert = std.debug.assert;
|
|
const testing = std.testing;
|
|
const Order = std.math.Order;
|
|
|
|
pub fn Treap(comptime Key: type, comptime compareFn: anytype) type {
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
// Allow for compareFn to be fn (anytype, anytype) anytype
|
|
// which allows the convenient use of std.math.order.
|
|
fn compare(a: Key, b: Key) Order {
|
|
return compareFn(a, b);
|
|
}
|
|
|
|
root: ?*Node = null,
|
|
prng: Prng = .{},
|
|
|
|
/// A customized pseudo random number generator for the treap.
|
|
/// This just helps reducing the memory size of the treap itself
|
|
/// as std.Random.DefaultPrng requires larger state (while producing better entropy for randomness to be fair).
|
|
const Prng = struct {
|
|
xorshift: usize = 0,
|
|
|
|
fn random(self: *Prng, seed: usize) usize {
|
|
// Lazily seed the prng state
|
|
if (self.xorshift == 0) {
|
|
self.xorshift = seed;
|
|
}
|
|
|
|
// Since we're using usize, decide the shifts by the integer's bit width.
|
|
const shifts = switch (@bitSizeOf(usize)) {
|
|
64 => .{ 13, 7, 17 },
|
|
32 => .{ 13, 17, 5 },
|
|
16 => .{ 7, 9, 8 },
|
|
else => @compileError("platform not supported"),
|
|
};
|
|
|
|
self.xorshift ^= self.xorshift >> shifts[0];
|
|
self.xorshift ^= self.xorshift << shifts[1];
|
|
self.xorshift ^= self.xorshift >> shifts[2];
|
|
|
|
assert(self.xorshift != 0);
|
|
return self.xorshift;
|
|
}
|
|
};
|
|
|
|
/// A Node represents an item or point in the treap with a uniquely associated key.
|
|
pub const Node = struct {
|
|
key: Key,
|
|
priority: usize,
|
|
parent: ?*Node,
|
|
children: [2]?*Node,
|
|
|
|
pub fn next(node: *Node) ?*Node {
|
|
return nextOnDirection(node, 1);
|
|
}
|
|
pub fn prev(node: *Node) ?*Node {
|
|
return nextOnDirection(node, 0);
|
|
}
|
|
};
|
|
|
|
fn extremeInSubtreeOnDirection(node: *Node, direction: u1) *Node {
|
|
var cur = node;
|
|
while (cur.children[direction]) |next| cur = next;
|
|
return cur;
|
|
}
|
|
|
|
fn nextOnDirection(node: *Node, direction: u1) ?*Node {
|
|
if (node.children[direction]) |child| {
|
|
return extremeInSubtreeOnDirection(child, direction ^ 1);
|
|
}
|
|
var cur = node;
|
|
// Traversing upward until we find `parent` to `cur` is NOT on
|
|
// `direction`, or equivalently, `cur` to `parent` IS on
|
|
// `direction` thus `parent` is the next.
|
|
while (true) {
|
|
if (cur.parent) |parent| {
|
|
// If `parent -> node` is NOT on `direction`, then
|
|
// `node -> parent` IS on `direction`
|
|
if (parent.children[direction] != cur) return parent;
|
|
cur = parent;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the smallest Node by key in the treap if there is one.
|
|
/// Use `getEntryForExisting()` to replace/remove this Node from the treap.
|
|
pub fn getMin(self: Self) ?*Node {
|
|
if (self.root) |root| return extremeInSubtreeOnDirection(root, 0);
|
|
return null;
|
|
}
|
|
|
|
/// Returns the largest Node by key in the treap if there is one.
|
|
/// Use `getEntryForExisting()` to replace/remove this Node from the treap.
|
|
pub fn getMax(self: Self) ?*Node {
|
|
if (self.root) |root| return extremeInSubtreeOnDirection(root, 1);
|
|
return null;
|
|
}
|
|
|
|
/// Lookup the Entry for the given key in the treap.
|
|
/// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.
|
|
pub fn getEntryFor(self: *Self, key: Key) Entry {
|
|
var parent: ?*Node = undefined;
|
|
const node = self.find(key, &parent);
|
|
|
|
return Entry{
|
|
.key = key,
|
|
.treap = self,
|
|
.node = node,
|
|
.context = .{ .inserted_under = parent },
|
|
};
|
|
}
|
|
|
|
/// Get an entry for a Node that currently exists in the treap.
|
|
/// It is undefined behavior if the Node is not currently inserted in the treap.
|
|
/// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.
|
|
pub fn getEntryForExisting(self: *Self, node: *Node) Entry {
|
|
assert(node.priority != 0);
|
|
|
|
return Entry{
|
|
.key = node.key,
|
|
.treap = self,
|
|
.node = node,
|
|
.context = .{ .inserted_under = node.parent },
|
|
};
|
|
}
|
|
|
|
/// An Entry represents a slot in the treap associated with a given key.
|
|
pub const Entry = struct {
|
|
/// The associated key for this entry.
|
|
key: Key,
|
|
/// A reference to the treap this entry is apart of.
|
|
treap: *Self,
|
|
/// The current node at this entry.
|
|
node: ?*Node,
|
|
/// The current state of the entry.
|
|
context: union(enum) {
|
|
/// A find() was called for this entry and the position in the treap is known.
|
|
inserted_under: ?*Node,
|
|
/// The entry's node was removed from the treap and a lookup must occur again for modification.
|
|
removed,
|
|
},
|
|
|
|
/// Update's the Node at this Entry in the treap with the new node (null for deleting). `new_node`
|
|
/// can have `undefind` content because the value will be initialized internally.
|
|
pub fn set(self: *Entry, new_node: ?*Node) void {
|
|
// Update the entry's node reference after updating the treap below.
|
|
defer self.node = new_node;
|
|
|
|
if (self.node) |old| {
|
|
if (new_node) |new| {
|
|
self.treap.replace(old, new);
|
|
return;
|
|
}
|
|
|
|
self.treap.remove(old);
|
|
self.context = .removed;
|
|
return;
|
|
}
|
|
|
|
if (new_node) |new| {
|
|
// A previous treap.remove() could have rebalanced the nodes
|
|
// so when inserting after a removal, we have to re-lookup the parent again.
|
|
// This lookup shouldn't find a node because we're yet to insert it..
|
|
var parent: ?*Node = undefined;
|
|
switch (self.context) {
|
|
.inserted_under => |p| parent = p,
|
|
.removed => assert(self.treap.find(self.key, &parent) == null),
|
|
}
|
|
|
|
self.treap.insert(self.key, parent, new);
|
|
self.context = .{ .inserted_under = parent };
|
|
}
|
|
}
|
|
};
|
|
|
|
fn find(self: Self, key: Key, parent_ref: *?*Node) ?*Node {
|
|
var node = self.root;
|
|
parent_ref.* = null;
|
|
|
|
// basic binary search while tracking the parent.
|
|
while (node) |current| {
|
|
const order = compare(key, current.key);
|
|
if (order == .eq) break;
|
|
|
|
parent_ref.* = current;
|
|
node = current.children[@intFromBool(order == .gt)];
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
fn insert(self: *Self, key: Key, parent: ?*Node, node: *Node) void {
|
|
// generate a random priority & prepare the node to be inserted into the tree
|
|
node.key = key;
|
|
node.priority = self.prng.random(@intFromPtr(node));
|
|
node.parent = parent;
|
|
node.children = [_]?*Node{ null, null };
|
|
|
|
// point the parent at the new node
|
|
const link = if (parent) |p| &p.children[@intFromBool(compare(key, p.key) == .gt)] else &self.root;
|
|
assert(link.* == null);
|
|
link.* = node;
|
|
|
|
// rotate the node up into the tree to balance it according to its priority
|
|
while (node.parent) |p| {
|
|
if (p.priority <= node.priority) break;
|
|
|
|
const is_right = p.children[1] == node;
|
|
assert(p.children[@intFromBool(is_right)] == node);
|
|
|
|
const rotate_right = !is_right;
|
|
self.rotate(p, rotate_right);
|
|
}
|
|
}
|
|
|
|
fn replace(self: *Self, old: *Node, new: *Node) void {
|
|
// copy over the values from the old node
|
|
new.key = old.key;
|
|
new.priority = old.priority;
|
|
new.parent = old.parent;
|
|
new.children = old.children;
|
|
|
|
// point the parent at the new node
|
|
const link = if (old.parent) |p| &p.children[@intFromBool(p.children[1] == old)] else &self.root;
|
|
assert(link.* == old);
|
|
link.* = new;
|
|
|
|
// point the children's parent at the new node
|
|
for (old.children) |child_node| {
|
|
const child = child_node orelse continue;
|
|
assert(child.parent == old);
|
|
child.parent = new;
|
|
}
|
|
}
|
|
|
|
fn remove(self: *Self, node: *Node) void {
|
|
// rotate the node down to be a leaf of the tree for removal, respecting priorities.
|
|
while (node.children[0] orelse node.children[1]) |_| {
|
|
self.rotate(node, rotate_right: {
|
|
const right = node.children[1] orelse break :rotate_right true;
|
|
const left = node.children[0] orelse break :rotate_right false;
|
|
break :rotate_right (left.priority < right.priority);
|
|
});
|
|
}
|
|
|
|
// node is a now a leaf; remove by nulling out the parent's reference to it.
|
|
const link = if (node.parent) |p| &p.children[@intFromBool(p.children[1] == node)] else &self.root;
|
|
assert(link.* == node);
|
|
link.* = null;
|
|
|
|
// clean up after ourselves
|
|
node.priority = 0;
|
|
node.parent = null;
|
|
node.children = [_]?*Node{ null, null };
|
|
}
|
|
|
|
fn rotate(self: *Self, node: *Node, right: bool) void {
|
|
// if right, converts the following:
|
|
// parent -> (node (target YY adjacent) XX)
|
|
// parent -> (target YY (node adjacent XX))
|
|
//
|
|
// if left (!right), converts the following:
|
|
// parent -> (node (target YY adjacent) XX)
|
|
// parent -> (target YY (node adjacent XX))
|
|
const parent = node.parent;
|
|
const target = node.children[@intFromBool(!right)] orelse unreachable;
|
|
const adjacent = target.children[@intFromBool(right)];
|
|
|
|
// rotate the children
|
|
target.children[@intFromBool(right)] = node;
|
|
node.children[@intFromBool(!right)] = adjacent;
|
|
|
|
// rotate the parents
|
|
node.parent = target;
|
|
target.parent = parent;
|
|
if (adjacent) |adj| adj.parent = node;
|
|
|
|
// fix the parent link
|
|
const link = if (parent) |p| &p.children[@intFromBool(p.children[1] == node)] else &self.root;
|
|
assert(link.* == node);
|
|
link.* = target;
|
|
}
|
|
|
|
/// Usage example:
|
|
/// var iter = treap.inorderIterator();
|
|
/// while (iter.next()) |node| {
|
|
/// ...
|
|
/// }
|
|
pub const InorderIterator = struct {
|
|
current: ?*Node,
|
|
|
|
pub fn next(it: *InorderIterator) ?*Node {
|
|
const current = it.current;
|
|
it.current = if (current) |cur|
|
|
cur.next()
|
|
else
|
|
null;
|
|
return current;
|
|
}
|
|
};
|
|
|
|
pub fn inorderIterator(self: *Self) InorderIterator {
|
|
return .{ .current = self.getMin() };
|
|
}
|
|
};
|
|
}
|
|
|
|
// For iterating a slice in a random order
|
|
// https://lemire.me/blog/2017/09/18/visiting-all-values-in-an-array-exactly-once-in-random-order/
|
|
fn SliceIterRandomOrder(comptime T: type) type {
|
|
return struct {
|
|
rng: std.Random,
|
|
slice: []T,
|
|
index: usize = undefined,
|
|
offset: usize = undefined,
|
|
co_prime: usize,
|
|
|
|
const Self = @This();
|
|
|
|
pub fn init(slice: []T, rng: std.Random) Self {
|
|
return Self{
|
|
.rng = rng,
|
|
.slice = slice,
|
|
.co_prime = blk: {
|
|
if (slice.len == 0) break :blk 0;
|
|
var prime = slice.len / 2;
|
|
while (prime < slice.len) : (prime += 1) {
|
|
var gcd = [_]usize{ prime, slice.len };
|
|
while (gcd[1] != 0) {
|
|
const temp = gcd;
|
|
gcd = [_]usize{ temp[1], temp[0] % temp[1] };
|
|
}
|
|
if (gcd[0] == 1) break;
|
|
}
|
|
break :blk prime;
|
|
},
|
|
};
|
|
}
|
|
|
|
pub fn reset(self: *Self) void {
|
|
self.index = 0;
|
|
self.offset = self.rng.int(usize);
|
|
}
|
|
|
|
pub fn next(self: *Self) ?*T {
|
|
if (self.index >= self.slice.len) return null;
|
|
defer self.index += 1;
|
|
return &self.slice[((self.index *% self.co_prime) +% self.offset) % self.slice.len];
|
|
}
|
|
};
|
|
}
|
|
|
|
const TestTreap = Treap(u64, std.math.order);
|
|
const TestNode = TestTreap.Node;
|
|
|
|
test "insert, find, replace, remove" {
|
|
var treap = TestTreap{};
|
|
var nodes: [10]TestNode = undefined;
|
|
|
|
var prng = std.Random.DefaultPrng.init(0xdeadbeef);
|
|
var iter = SliceIterRandomOrder(TestNode).init(&nodes, prng.random());
|
|
|
|
// insert check
|
|
iter.reset();
|
|
while (iter.next()) |node| {
|
|
const key = prng.random().int(u64);
|
|
|
|
// make sure the current entry is empty.
|
|
var entry = treap.getEntryFor(key);
|
|
try testing.expectEqual(entry.key, key);
|
|
try testing.expectEqual(entry.node, null);
|
|
|
|
// insert the entry and make sure the fields are correct.
|
|
entry.set(node);
|
|
try testing.expectEqual(node.key, key);
|
|
try testing.expectEqual(entry.key, key);
|
|
try testing.expectEqual(entry.node, node);
|
|
}
|
|
|
|
// find check
|
|
iter.reset();
|
|
while (iter.next()) |node| {
|
|
const key = node.key;
|
|
|
|
// find the entry by-key and by-node after having been inserted.
|
|
const entry = treap.getEntryFor(node.key);
|
|
try testing.expectEqual(entry.key, key);
|
|
try testing.expectEqual(entry.node, node);
|
|
try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
|
|
}
|
|
|
|
// in-order iterator check
|
|
{
|
|
var it = treap.inorderIterator();
|
|
var last_key: u64 = 0;
|
|
while (it.next()) |node| {
|
|
try std.testing.expect(node.key >= last_key);
|
|
last_key = node.key;
|
|
}
|
|
}
|
|
|
|
// replace check
|
|
iter.reset();
|
|
while (iter.next()) |node| {
|
|
const key = node.key;
|
|
|
|
// find the entry by node since we already know it exists
|
|
var entry = treap.getEntryForExisting(node);
|
|
try testing.expectEqual(entry.key, key);
|
|
try testing.expectEqual(entry.node, node);
|
|
|
|
var stub_node: TestNode = undefined;
|
|
|
|
// replace the node with a stub_node and ensure future finds point to the stub_node.
|
|
entry.set(&stub_node);
|
|
try testing.expectEqual(entry.node, &stub_node);
|
|
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
|
|
try testing.expectEqual(entry.node, treap.getEntryForExisting(&stub_node).node);
|
|
|
|
// replace the stub_node back to the node and ensure future finds point to the old node.
|
|
entry.set(node);
|
|
try testing.expectEqual(entry.node, node);
|
|
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
|
|
try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
|
|
}
|
|
|
|
// remove check
|
|
iter.reset();
|
|
while (iter.next()) |node| {
|
|
const key = node.key;
|
|
|
|
// find the entry by node since we already know it exists
|
|
var entry = treap.getEntryForExisting(node);
|
|
try testing.expectEqual(entry.key, key);
|
|
try testing.expectEqual(entry.node, node);
|
|
|
|
// remove the node at the entry and ensure future finds point to it being removed.
|
|
entry.set(null);
|
|
try testing.expectEqual(entry.node, null);
|
|
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
|
|
|
|
// insert the node back and ensure future finds point to the inserted node
|
|
entry.set(node);
|
|
try testing.expectEqual(entry.node, node);
|
|
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
|
|
try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
|
|
|
|
// remove the node again and make sure it was cleared after the insert
|
|
entry.set(null);
|
|
try testing.expectEqual(entry.node, null);
|
|
try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
|
|
}
|
|
}
|
|
|
|
test "inorderIterator" {
|
|
var treap = TestTreap{};
|
|
var nodes: [10]TestNode = undefined;
|
|
|
|
// Build the tree.
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
const key = @as(u64, i);
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(&nodes[i]);
|
|
}
|
|
|
|
// Test the iterator.
|
|
var iter = treap.inorderIterator();
|
|
i = 0;
|
|
while (iter.next()) |node| {
|
|
const key = @as(u64, i);
|
|
try testing.expectEqual(key, node.key);
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
test "getMin, getMax, simple" {
|
|
var treap = TestTreap{};
|
|
var nodes: [3]TestNode = undefined;
|
|
|
|
try testing.expectEqual(null, treap.getMin());
|
|
try testing.expectEqual(null, treap.getMax());
|
|
{ // nodes[1]
|
|
var entry = treap.getEntryFor(1);
|
|
entry.set(&nodes[1]);
|
|
try testing.expectEqual(&nodes[1], treap.getMin());
|
|
try testing.expectEqual(&nodes[1], treap.getMax());
|
|
}
|
|
{ // nodes[0]
|
|
var entry = treap.getEntryFor(0);
|
|
entry.set(&nodes[0]);
|
|
try testing.expectEqual(&nodes[0], treap.getMin());
|
|
try testing.expectEqual(&nodes[1], treap.getMax());
|
|
}
|
|
{ // nodes[2]
|
|
var entry = treap.getEntryFor(2);
|
|
entry.set(&nodes[2]);
|
|
try testing.expectEqual(&nodes[0], treap.getMin());
|
|
try testing.expectEqual(&nodes[2], treap.getMax());
|
|
}
|
|
}
|
|
|
|
test "getMin, getMax, random" {
|
|
var nodes: [100]TestNode = undefined;
|
|
var prng = std.Random.DefaultPrng.init(0xdeadbeef);
|
|
var iter = SliceIterRandomOrder(TestNode).init(&nodes, prng.random());
|
|
|
|
var treap = TestTreap{};
|
|
var min: u64 = std.math.maxInt(u64);
|
|
var max: u64 = 0;
|
|
|
|
try testing.expectEqual(null, treap.getMin());
|
|
try testing.expectEqual(null, treap.getMax());
|
|
|
|
// Insert and check min/max after each insertion.
|
|
iter.reset();
|
|
while (iter.next()) |node| {
|
|
const key = prng.random().int(u64);
|
|
|
|
// Insert into `treap`.
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(node);
|
|
|
|
if (key < min) min = key;
|
|
if (key > max) max = key;
|
|
|
|
const min_node = treap.getMin().?;
|
|
try std.testing.expectEqual(null, min_node.prev());
|
|
try std.testing.expectEqual(min, min_node.key);
|
|
|
|
const max_node = treap.getMax().?;
|
|
try std.testing.expectEqual(null, max_node.next());
|
|
try std.testing.expectEqual(max, max_node.key);
|
|
}
|
|
}
|
|
|
|
test "node.{prev(),next()} with sequential insertion and deletion" {
|
|
// Insert order: 50, 0, 1, 2, ..., 49, 51, 52, ..., 99.
|
|
// Delete order: 0, 1, 2, ..., 49, 51, 52, ..., 99.
|
|
// Check 50's neighbors.
|
|
var treap = TestTreap{};
|
|
var nodes: [100]TestNode = undefined;
|
|
{
|
|
var entry = treap.getEntryFor(50);
|
|
entry.set(&nodes[50]);
|
|
try testing.expectEqual(50, nodes[50].key);
|
|
try testing.expectEqual(null, nodes[50].prev());
|
|
try testing.expectEqual(null, nodes[50].next());
|
|
}
|
|
// Insert others.
|
|
var i: usize = 0;
|
|
while (i < 50) : (i += 1) {
|
|
const key = @as(u64, i);
|
|
const node = &nodes[i];
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(node);
|
|
try testing.expectEqual(key, node.key);
|
|
try testing.expectEqual(node, nodes[50].prev());
|
|
try testing.expectEqual(null, nodes[50].next());
|
|
}
|
|
i = 51;
|
|
while (i < 100) : (i += 1) {
|
|
const key = @as(u64, i);
|
|
const node = &nodes[i];
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(node);
|
|
try testing.expectEqual(key, node.key);
|
|
try testing.expectEqual(&nodes[49], nodes[50].prev());
|
|
try testing.expectEqual(&nodes[51], nodes[50].next());
|
|
}
|
|
// Remove others.
|
|
i = 0;
|
|
while (i < 49) : (i += 1) {
|
|
const key = @as(u64, i);
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(null);
|
|
try testing.expectEqual(&nodes[49], nodes[50].prev());
|
|
try testing.expectEqual(&nodes[51], nodes[50].next());
|
|
}
|
|
{ // i = 49.
|
|
const key = @as(u64, i);
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(null);
|
|
try testing.expectEqual(null, nodes[50].prev());
|
|
try testing.expectEqual(&nodes[51], nodes[50].next());
|
|
}
|
|
i = 51;
|
|
while (i < 99) : (i += 1) {
|
|
const key = @as(u64, i);
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(null);
|
|
try testing.expectEqual(null, nodes[50].prev());
|
|
try testing.expectEqual(&nodes[i + 1], nodes[50].next());
|
|
}
|
|
{ // i = 99.
|
|
const key = @as(u64, i);
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(null);
|
|
try testing.expectEqual(null, nodes[50].prev());
|
|
try testing.expectEqual(null, nodes[50].next());
|
|
}
|
|
}
|
|
|
|
fn findFirstGreaterOrEqual(array: []u64, value: u64) usize {
|
|
var i: usize = 0;
|
|
while (i < array.len and array[i] < value) i += 1;
|
|
return i;
|
|
}
|
|
|
|
fn testOrderedArrayAndTreapConsistency(array: []u64, treap: *TestTreap) !void {
|
|
var i: usize = 0;
|
|
while (i < array.len) : (i += 1) {
|
|
const value = array[i];
|
|
|
|
const entry = treap.getEntryFor(value);
|
|
try testing.expect(entry.node != null);
|
|
const node = entry.node.?;
|
|
try testing.expectEqual(value, node.key);
|
|
|
|
if (i == 0) {
|
|
try testing.expectEqual(node.prev(), null);
|
|
} else {
|
|
try testing.expectEqual(node.prev(), treap.getEntryFor(array[i - 1]).node);
|
|
}
|
|
if (i + 1 == array.len) {
|
|
try testing.expectEqual(node.next(), null);
|
|
} else {
|
|
try testing.expectEqual(node.next(), treap.getEntryFor(array[i + 1]).node);
|
|
}
|
|
}
|
|
}
|
|
|
|
test "node.{prev(),next()} with random data" {
|
|
var nodes: [100]TestNode = undefined;
|
|
var prng = std.Random.DefaultPrng.init(0xdeadbeef);
|
|
var iter = SliceIterRandomOrder(TestNode).init(&nodes, prng.random());
|
|
|
|
var treap = TestTreap{};
|
|
// A slow, stupid but correct reference. Ordered.
|
|
var golden = std.ArrayList(u64).init(std.testing.allocator);
|
|
defer golden.deinit();
|
|
|
|
// Insert.
|
|
iter.reset();
|
|
while (iter.next()) |node| {
|
|
const key = prng.random().int(u64);
|
|
|
|
// Insert into `golden`.
|
|
const i = findFirstGreaterOrEqual(golden.items, key);
|
|
// Ensure not found. If found: `prng`'s fault.
|
|
try testing.expect(i == golden.items.len or golden.items[i] > key);
|
|
try golden.insert(i, key);
|
|
|
|
// Insert into `treap`.
|
|
var entry = treap.getEntryFor(key);
|
|
entry.set(node);
|
|
|
|
try testOrderedArrayAndTreapConsistency(golden.items, &treap);
|
|
}
|
|
|
|
// Delete.
|
|
iter.reset();
|
|
while (iter.next()) |node| {
|
|
const key = node.key;
|
|
|
|
// Delete from `golden`.
|
|
const i = findFirstGreaterOrEqual(golden.items, key);
|
|
try testing.expect(i < golden.items.len);
|
|
_ = golden.orderedRemove(i);
|
|
|
|
// Delete from `treap`.
|
|
var entry = treap.getEntryFor(key);
|
|
try testing.expect(entry.node != null);
|
|
entry.set(null);
|
|
|
|
try testOrderedArrayAndTreapConsistency(golden.items, &treap);
|
|
}
|
|
}
|