zig/lib/std/crypto/Certificate.zig
Travis Staloch 8af59d1f98 ComptimeStringMap: return a regular struct and optimize
this patch renames ComptimeStringMap to StaticStringMap, makes it
accept only a single type parameter, and return a known struct type
instead of an anonymous struct.  initial motivation for these changes
was to reduce the 'very long type names' issue described here
https://github.com/ziglang/zig/pull/19682.

this breaks the previous API.  users will now need to write:
`const map = std.StaticStringMap(T).initComptime(kvs_list);`

* move `kvs_list` param from type param to an `initComptime()` param
* new public methods
  * `keys()`, `values()` helpers
  * `init(allocator)`, `deinit(allocator)` for runtime data
  * `getLongestPrefix(str)`, `getLongestPrefixIndex(str)` - i'm not sure
     these belong but have left in for now incase they are deemed useful
* performance notes:
  * i posted some benchmarking results here:
    https://github.com/travisstaloch/comptime-string-map-revised/issues/1
  * i noticed a speedup reducing the size of the struct from 48 to 32
    bytes and thus use u32s instead of usize for all length fields
  * i noticed speedup storing KVs as a struct of arrays
  * latest benchmark shows these wall_time improvements for
    debug/safe/small/fast builds: -6.6% / -10.2% / -19.1% / -8.9%. full
    output in link above.
2024-04-22 15:31:41 -07:00

1166 lines
45 KiB
Zig

buffer: []const u8,
index: u32,
pub const Bundle = @import("Certificate/Bundle.zig");
pub const Version = enum { v1, v2, v3 };
pub const Algorithm = enum {
sha1WithRSAEncryption,
sha224WithRSAEncryption,
sha256WithRSAEncryption,
sha384WithRSAEncryption,
sha512WithRSAEncryption,
ecdsa_with_SHA224,
ecdsa_with_SHA256,
ecdsa_with_SHA384,
ecdsa_with_SHA512,
md2WithRSAEncryption,
md5WithRSAEncryption,
curveEd25519,
pub const map = std.StaticStringMap(Algorithm).initComptime(.{
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x05 }, .sha1WithRSAEncryption },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0B }, .sha256WithRSAEncryption },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0C }, .sha384WithRSAEncryption },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0D }, .sha512WithRSAEncryption },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x0E }, .sha224WithRSAEncryption },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x01 }, .ecdsa_with_SHA224 },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x02 }, .ecdsa_with_SHA256 },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x03 }, .ecdsa_with_SHA384 },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x04 }, .ecdsa_with_SHA512 },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x02 }, .md2WithRSAEncryption },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x04 }, .md5WithRSAEncryption },
.{ &[_]u8{ 0x2B, 0x65, 0x70 }, .curveEd25519 },
});
pub fn Hash(comptime algorithm: Algorithm) type {
return switch (algorithm) {
.sha1WithRSAEncryption => crypto.hash.Sha1,
.ecdsa_with_SHA224, .sha224WithRSAEncryption => crypto.hash.sha2.Sha224,
.ecdsa_with_SHA256, .sha256WithRSAEncryption => crypto.hash.sha2.Sha256,
.ecdsa_with_SHA384, .sha384WithRSAEncryption => crypto.hash.sha2.Sha384,
.ecdsa_with_SHA512, .sha512WithRSAEncryption, .curveEd25519 => crypto.hash.sha2.Sha512,
.md2WithRSAEncryption => @compileError("unimplemented"),
.md5WithRSAEncryption => crypto.hash.Md5,
};
}
};
pub const AlgorithmCategory = enum {
rsaEncryption,
X9_62_id_ecPublicKey,
curveEd25519,
pub const map = std.StaticStringMap(AlgorithmCategory).initComptime(.{
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 }, .rsaEncryption },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 }, .X9_62_id_ecPublicKey },
.{ &[_]u8{ 0x2B, 0x65, 0x70 }, .curveEd25519 },
});
};
pub const Attribute = enum {
commonName,
serialNumber,
countryName,
localityName,
stateOrProvinceName,
streetAddress,
organizationName,
organizationalUnitName,
postalCode,
organizationIdentifier,
pkcs9_emailAddress,
domainComponent,
pub const map = std.StaticStringMap(Attribute).initComptime(.{
.{ &[_]u8{ 0x55, 0x04, 0x03 }, .commonName },
.{ &[_]u8{ 0x55, 0x04, 0x05 }, .serialNumber },
.{ &[_]u8{ 0x55, 0x04, 0x06 }, .countryName },
.{ &[_]u8{ 0x55, 0x04, 0x07 }, .localityName },
.{ &[_]u8{ 0x55, 0x04, 0x08 }, .stateOrProvinceName },
.{ &[_]u8{ 0x55, 0x04, 0x09 }, .streetAddress },
.{ &[_]u8{ 0x55, 0x04, 0x0A }, .organizationName },
.{ &[_]u8{ 0x55, 0x04, 0x0B }, .organizationalUnitName },
.{ &[_]u8{ 0x55, 0x04, 0x11 }, .postalCode },
.{ &[_]u8{ 0x55, 0x04, 0x61 }, .organizationIdentifier },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x09, 0x01 }, .pkcs9_emailAddress },
.{ &[_]u8{ 0x09, 0x92, 0x26, 0x89, 0x93, 0xF2, 0x2C, 0x64, 0x01, 0x19 }, .domainComponent },
});
};
pub const NamedCurve = enum {
secp384r1,
secp521r1,
X9_62_prime256v1,
pub const map = std.StaticStringMap(NamedCurve).initComptime(.{
.{ &[_]u8{ 0x2B, 0x81, 0x04, 0x00, 0x22 }, .secp384r1 },
.{ &[_]u8{ 0x2B, 0x81, 0x04, 0x00, 0x23 }, .secp521r1 },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07 }, .X9_62_prime256v1 },
});
pub fn Curve(comptime curve: NamedCurve) type {
return switch (curve) {
.X9_62_prime256v1 => crypto.ecc.P256,
.secp384r1 => crypto.ecc.P384,
.secp521r1 => @compileError("unimplemented"),
};
}
};
pub const ExtensionId = enum {
subject_key_identifier,
key_usage,
private_key_usage_period,
subject_alt_name,
issuer_alt_name,
basic_constraints,
crl_number,
certificate_policies,
authority_key_identifier,
msCertsrvCAVersion,
commonName,
ext_key_usage,
crl_distribution_points,
info_access,
entrustVersInfo,
enroll_certtype,
pe_logotype,
netscape_cert_type,
netscape_comment,
pub const map = std.StaticStringMap(ExtensionId).initComptime(.{
.{ &[_]u8{ 0x55, 0x04, 0x03 }, .commonName },
.{ &[_]u8{ 0x55, 0x1D, 0x01 }, .authority_key_identifier },
.{ &[_]u8{ 0x55, 0x1D, 0x07 }, .subject_alt_name },
.{ &[_]u8{ 0x55, 0x1D, 0x0E }, .subject_key_identifier },
.{ &[_]u8{ 0x55, 0x1D, 0x0F }, .key_usage },
.{ &[_]u8{ 0x55, 0x1D, 0x0A }, .basic_constraints },
.{ &[_]u8{ 0x55, 0x1D, 0x10 }, .private_key_usage_period },
.{ &[_]u8{ 0x55, 0x1D, 0x11 }, .subject_alt_name },
.{ &[_]u8{ 0x55, 0x1D, 0x12 }, .issuer_alt_name },
.{ &[_]u8{ 0x55, 0x1D, 0x13 }, .basic_constraints },
.{ &[_]u8{ 0x55, 0x1D, 0x14 }, .crl_number },
.{ &[_]u8{ 0x55, 0x1D, 0x1F }, .crl_distribution_points },
.{ &[_]u8{ 0x55, 0x1D, 0x20 }, .certificate_policies },
.{ &[_]u8{ 0x55, 0x1D, 0x23 }, .authority_key_identifier },
.{ &[_]u8{ 0x55, 0x1D, 0x25 }, .ext_key_usage },
.{ &[_]u8{ 0x2B, 0x06, 0x01, 0x04, 0x01, 0x82, 0x37, 0x15, 0x01 }, .msCertsrvCAVersion },
.{ &[_]u8{ 0x2B, 0x06, 0x01, 0x05, 0x05, 0x07, 0x01, 0x01 }, .info_access },
.{ &[_]u8{ 0x2A, 0x86, 0x48, 0x86, 0xF6, 0x7D, 0x07, 0x41, 0x00 }, .entrustVersInfo },
.{ &[_]u8{ 0x2b, 0x06, 0x01, 0x04, 0x01, 0x82, 0x37, 0x14, 0x02 }, .enroll_certtype },
.{ &[_]u8{ 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x01, 0x0c }, .pe_logotype },
.{ &[_]u8{ 0x60, 0x86, 0x48, 0x01, 0x86, 0xf8, 0x42, 0x01, 0x01 }, .netscape_cert_type },
.{ &[_]u8{ 0x60, 0x86, 0x48, 0x01, 0x86, 0xf8, 0x42, 0x01, 0x0d }, .netscape_comment },
});
};
pub const GeneralNameTag = enum(u5) {
otherName = 0,
rfc822Name = 1,
dNSName = 2,
x400Address = 3,
directoryName = 4,
ediPartyName = 5,
uniformResourceIdentifier = 6,
iPAddress = 7,
registeredID = 8,
_,
};
pub const Parsed = struct {
certificate: Certificate,
issuer_slice: Slice,
subject_slice: Slice,
common_name_slice: Slice,
signature_slice: Slice,
signature_algorithm: Algorithm,
pub_key_algo: PubKeyAlgo,
pub_key_slice: Slice,
message_slice: Slice,
subject_alt_name_slice: Slice,
validity: Validity,
version: Version,
pub const PubKeyAlgo = union(AlgorithmCategory) {
rsaEncryption: void,
X9_62_id_ecPublicKey: NamedCurve,
curveEd25519: void,
};
pub const Validity = struct {
not_before: u64,
not_after: u64,
};
pub const Slice = der.Element.Slice;
pub fn slice(p: Parsed, s: Slice) []const u8 {
return p.certificate.buffer[s.start..s.end];
}
pub fn issuer(p: Parsed) []const u8 {
return p.slice(p.issuer_slice);
}
pub fn subject(p: Parsed) []const u8 {
return p.slice(p.subject_slice);
}
pub fn commonName(p: Parsed) []const u8 {
return p.slice(p.common_name_slice);
}
pub fn signature(p: Parsed) []const u8 {
return p.slice(p.signature_slice);
}
pub fn pubKey(p: Parsed) []const u8 {
return p.slice(p.pub_key_slice);
}
pub fn pubKeySigAlgo(p: Parsed) []const u8 {
return p.slice(p.pub_key_signature_algorithm_slice);
}
pub fn message(p: Parsed) []const u8 {
return p.slice(p.message_slice);
}
pub fn subjectAltName(p: Parsed) []const u8 {
return p.slice(p.subject_alt_name_slice);
}
pub const VerifyError = error{
CertificateIssuerMismatch,
CertificateNotYetValid,
CertificateExpired,
CertificateSignatureAlgorithmUnsupported,
CertificateSignatureAlgorithmMismatch,
CertificateFieldHasInvalidLength,
CertificateFieldHasWrongDataType,
CertificatePublicKeyInvalid,
CertificateSignatureInvalidLength,
CertificateSignatureInvalid,
CertificateSignatureUnsupportedBitCount,
CertificateSignatureNamedCurveUnsupported,
};
/// This function verifies:
/// * That the subject's issuer is indeed the provided issuer.
/// * The time validity of the subject.
/// * The signature.
pub fn verify(parsed_subject: Parsed, parsed_issuer: Parsed, now_sec: i64) VerifyError!void {
// Check that the subject's issuer name matches the issuer's
// subject name.
if (!mem.eql(u8, parsed_subject.issuer(), parsed_issuer.subject())) {
return error.CertificateIssuerMismatch;
}
if (now_sec < parsed_subject.validity.not_before)
return error.CertificateNotYetValid;
if (now_sec > parsed_subject.validity.not_after)
return error.CertificateExpired;
switch (parsed_subject.signature_algorithm) {
inline .sha1WithRSAEncryption,
.sha224WithRSAEncryption,
.sha256WithRSAEncryption,
.sha384WithRSAEncryption,
.sha512WithRSAEncryption,
=> |algorithm| return verifyRsa(
algorithm.Hash(),
parsed_subject.message(),
parsed_subject.signature(),
parsed_issuer.pub_key_algo,
parsed_issuer.pubKey(),
),
inline .ecdsa_with_SHA224,
.ecdsa_with_SHA256,
.ecdsa_with_SHA384,
.ecdsa_with_SHA512,
=> |algorithm| return verify_ecdsa(
algorithm.Hash(),
parsed_subject.message(),
parsed_subject.signature(),
parsed_issuer.pub_key_algo,
parsed_issuer.pubKey(),
),
.md2WithRSAEncryption, .md5WithRSAEncryption => {
return error.CertificateSignatureAlgorithmUnsupported;
},
.curveEd25519 => return verifyEd25519(
parsed_subject.message(),
parsed_subject.signature(),
parsed_issuer.pub_key_algo,
parsed_issuer.pubKey(),
),
}
}
pub const VerifyHostNameError = error{
CertificateHostMismatch,
CertificateFieldHasInvalidLength,
};
pub fn verifyHostName(parsed_subject: Parsed, host_name: []const u8) VerifyHostNameError!void {
// If the Subject Alternative Names extension is present, this is
// what to check. Otherwise, only the common name is checked.
const subject_alt_name = parsed_subject.subjectAltName();
if (subject_alt_name.len == 0) {
if (checkHostName(host_name, parsed_subject.commonName())) {
return;
} else {
return error.CertificateHostMismatch;
}
}
const general_names = try der.Element.parse(subject_alt_name, 0);
var name_i = general_names.slice.start;
while (name_i < general_names.slice.end) {
const general_name = try der.Element.parse(subject_alt_name, name_i);
name_i = general_name.slice.end;
switch (@as(GeneralNameTag, @enumFromInt(@intFromEnum(general_name.identifier.tag)))) {
.dNSName => {
const dns_name = subject_alt_name[general_name.slice.start..general_name.slice.end];
if (checkHostName(host_name, dns_name)) return;
},
else => {},
}
}
return error.CertificateHostMismatch;
}
// Check hostname according to RFC2818 specification:
//
// If more than one identity of a given type is present in
// the certificate (e.g., more than one DNSName name, a match in any one
// of the set is considered acceptable.) Names may contain the wildcard
// character * which is considered to match any single domain name
// component or component fragment. E.g., *.a.com matches foo.a.com but
// not bar.foo.a.com. f*.com matches foo.com but not bar.com.
fn checkHostName(host_name: []const u8, dns_name: []const u8) bool {
if (mem.eql(u8, dns_name, host_name)) {
return true; // exact match
}
var it_host = std.mem.splitScalar(u8, host_name, '.');
var it_dns = std.mem.splitScalar(u8, dns_name, '.');
const len_match = while (true) {
const host = it_host.next();
const dns = it_dns.next();
if (host == null or dns == null) {
break host == null and dns == null;
}
// If not a wildcard and they dont
// match then there is no match.
if (mem.eql(u8, dns.?, "*") == false and mem.eql(u8, dns.?, host.?) == false) {
return false;
}
};
// If the components are not the same
// length then there is no match.
return len_match;
}
};
test "Parsed.checkHostName" {
const expectEqual = std.testing.expectEqual;
try expectEqual(true, Parsed.checkHostName("ziglang.org", "ziglang.org"));
try expectEqual(true, Parsed.checkHostName("bar.ziglang.org", "*.ziglang.org"));
try expectEqual(false, Parsed.checkHostName("foo.bar.ziglang.org", "*.ziglang.org"));
try expectEqual(false, Parsed.checkHostName("ziglang.org", "zig*.org"));
try expectEqual(false, Parsed.checkHostName("lang.org", "zig*.org"));
}
pub const ParseError = der.Element.ParseElementError || ParseVersionError || ParseTimeError || ParseEnumError || ParseBitStringError;
pub fn parse(cert: Certificate) ParseError!Parsed {
const cert_bytes = cert.buffer;
const certificate = try der.Element.parse(cert_bytes, cert.index);
const tbs_certificate = try der.Element.parse(cert_bytes, certificate.slice.start);
const version_elem = try der.Element.parse(cert_bytes, tbs_certificate.slice.start);
const version = try parseVersion(cert_bytes, version_elem);
const serial_number = if (@as(u8, @bitCast(version_elem.identifier)) == 0xa0)
try der.Element.parse(cert_bytes, version_elem.slice.end)
else
version_elem;
// RFC 5280, section 4.1.2.3:
// "This field MUST contain the same algorithm identifier as
// the signatureAlgorithm field in the sequence Certificate."
const tbs_signature = try der.Element.parse(cert_bytes, serial_number.slice.end);
const issuer = try der.Element.parse(cert_bytes, tbs_signature.slice.end);
const validity = try der.Element.parse(cert_bytes, issuer.slice.end);
const not_before = try der.Element.parse(cert_bytes, validity.slice.start);
const not_before_utc = try parseTime(cert, not_before);
const not_after = try der.Element.parse(cert_bytes, not_before.slice.end);
const not_after_utc = try parseTime(cert, not_after);
const subject = try der.Element.parse(cert_bytes, validity.slice.end);
const pub_key_info = try der.Element.parse(cert_bytes, subject.slice.end);
const pub_key_signature_algorithm = try der.Element.parse(cert_bytes, pub_key_info.slice.start);
const pub_key_algo_elem = try der.Element.parse(cert_bytes, pub_key_signature_algorithm.slice.start);
const pub_key_algo_tag = try parseAlgorithmCategory(cert_bytes, pub_key_algo_elem);
var pub_key_algo: Parsed.PubKeyAlgo = undefined;
switch (pub_key_algo_tag) {
.rsaEncryption => {
pub_key_algo = .{ .rsaEncryption = {} };
},
.X9_62_id_ecPublicKey => {
// RFC 5480 Section 2.1.1.1 Named Curve
// ECParameters ::= CHOICE {
// namedCurve OBJECT IDENTIFIER
// -- implicitCurve NULL
// -- specifiedCurve SpecifiedECDomain
// }
const params_elem = try der.Element.parse(cert_bytes, pub_key_algo_elem.slice.end);
const named_curve = try parseNamedCurve(cert_bytes, params_elem);
pub_key_algo = .{ .X9_62_id_ecPublicKey = named_curve };
},
.curveEd25519 => {
pub_key_algo = .{ .curveEd25519 = {} };
},
}
const pub_key_elem = try der.Element.parse(cert_bytes, pub_key_signature_algorithm.slice.end);
const pub_key = try parseBitString(cert, pub_key_elem);
var common_name = der.Element.Slice.empty;
var name_i = subject.slice.start;
while (name_i < subject.slice.end) {
const rdn = try der.Element.parse(cert_bytes, name_i);
var rdn_i = rdn.slice.start;
while (rdn_i < rdn.slice.end) {
const atav = try der.Element.parse(cert_bytes, rdn_i);
var atav_i = atav.slice.start;
while (atav_i < atav.slice.end) {
const ty_elem = try der.Element.parse(cert_bytes, atav_i);
const val = try der.Element.parse(cert_bytes, ty_elem.slice.end);
atav_i = val.slice.end;
const ty = parseAttribute(cert_bytes, ty_elem) catch |err| switch (err) {
error.CertificateHasUnrecognizedObjectId => continue,
else => |e| return e,
};
switch (ty) {
.commonName => common_name = val.slice,
else => {},
}
}
rdn_i = atav.slice.end;
}
name_i = rdn.slice.end;
}
const sig_algo = try der.Element.parse(cert_bytes, tbs_certificate.slice.end);
const algo_elem = try der.Element.parse(cert_bytes, sig_algo.slice.start);
const signature_algorithm = try parseAlgorithm(cert_bytes, algo_elem);
const sig_elem = try der.Element.parse(cert_bytes, sig_algo.slice.end);
const signature = try parseBitString(cert, sig_elem);
// Extensions
var subject_alt_name_slice = der.Element.Slice.empty;
ext: {
if (version == .v1)
break :ext;
if (pub_key_info.slice.end >= tbs_certificate.slice.end)
break :ext;
const outer_extensions = try der.Element.parse(cert_bytes, pub_key_info.slice.end);
if (outer_extensions.identifier.tag != .bitstring)
break :ext;
const extensions = try der.Element.parse(cert_bytes, outer_extensions.slice.start);
var ext_i = extensions.slice.start;
while (ext_i < extensions.slice.end) {
const extension = try der.Element.parse(cert_bytes, ext_i);
ext_i = extension.slice.end;
const oid_elem = try der.Element.parse(cert_bytes, extension.slice.start);
const ext_id = parseExtensionId(cert_bytes, oid_elem) catch |err| switch (err) {
error.CertificateHasUnrecognizedObjectId => continue,
else => |e| return e,
};
const critical_elem = try der.Element.parse(cert_bytes, oid_elem.slice.end);
const ext_bytes_elem = if (critical_elem.identifier.tag != .boolean)
critical_elem
else
try der.Element.parse(cert_bytes, critical_elem.slice.end);
switch (ext_id) {
.subject_alt_name => subject_alt_name_slice = ext_bytes_elem.slice,
else => continue,
}
}
}
return .{
.certificate = cert,
.common_name_slice = common_name,
.issuer_slice = issuer.slice,
.subject_slice = subject.slice,
.signature_slice = signature,
.signature_algorithm = signature_algorithm,
.message_slice = .{ .start = certificate.slice.start, .end = tbs_certificate.slice.end },
.pub_key_algo = pub_key_algo,
.pub_key_slice = pub_key,
.validity = .{
.not_before = not_before_utc,
.not_after = not_after_utc,
},
.subject_alt_name_slice = subject_alt_name_slice,
.version = version,
};
}
pub fn verify(subject: Certificate, issuer: Certificate, now_sec: i64) !void {
const parsed_subject = try subject.parse();
const parsed_issuer = try issuer.parse();
return parsed_subject.verify(parsed_issuer, now_sec);
}
pub fn contents(cert: Certificate, elem: der.Element) []const u8 {
return cert.buffer[elem.slice.start..elem.slice.end];
}
pub const ParseBitStringError = error{ CertificateFieldHasWrongDataType, CertificateHasInvalidBitString };
pub fn parseBitString(cert: Certificate, elem: der.Element) !der.Element.Slice {
if (elem.identifier.tag != .bitstring) return error.CertificateFieldHasWrongDataType;
if (cert.buffer[elem.slice.start] != 0) return error.CertificateHasInvalidBitString;
return .{ .start = elem.slice.start + 1, .end = elem.slice.end };
}
pub const ParseTimeError = error{ CertificateTimeInvalid, CertificateFieldHasWrongDataType };
/// Returns number of seconds since epoch.
pub fn parseTime(cert: Certificate, elem: der.Element) ParseTimeError!u64 {
const bytes = cert.contents(elem);
switch (elem.identifier.tag) {
.utc_time => {
// Example: "YYMMDD000000Z"
if (bytes.len != 13)
return error.CertificateTimeInvalid;
if (bytes[12] != 'Z')
return error.CertificateTimeInvalid;
return Date.toSeconds(.{
.year = @as(u16, 2000) + try parseTimeDigits(bytes[0..2], 0, 99),
.month = try parseTimeDigits(bytes[2..4], 1, 12),
.day = try parseTimeDigits(bytes[4..6], 1, 31),
.hour = try parseTimeDigits(bytes[6..8], 0, 23),
.minute = try parseTimeDigits(bytes[8..10], 0, 59),
.second = try parseTimeDigits(bytes[10..12], 0, 59),
});
},
.generalized_time => {
// Examples:
// "19920521000000Z"
// "19920622123421Z"
// "19920722132100.3Z"
if (bytes.len < 15)
return error.CertificateTimeInvalid;
return Date.toSeconds(.{
.year = try parseYear4(bytes[0..4]),
.month = try parseTimeDigits(bytes[4..6], 1, 12),
.day = try parseTimeDigits(bytes[6..8], 1, 31),
.hour = try parseTimeDigits(bytes[8..10], 0, 23),
.minute = try parseTimeDigits(bytes[10..12], 0, 59),
.second = try parseTimeDigits(bytes[12..14], 0, 59),
});
},
else => return error.CertificateFieldHasWrongDataType,
}
}
const Date = struct {
/// example: 1999
year: u16,
/// range: 1 to 12
month: u8,
/// range: 1 to 31
day: u8,
/// range: 0 to 59
hour: u8,
/// range: 0 to 59
minute: u8,
/// range: 0 to 59
second: u8,
/// Convert to number of seconds since epoch.
pub fn toSeconds(date: Date) u64 {
var sec: u64 = 0;
{
var year: u16 = 1970;
while (year < date.year) : (year += 1) {
const days: u64 = std.time.epoch.getDaysInYear(year);
sec += days * std.time.epoch.secs_per_day;
}
}
{
const is_leap = std.time.epoch.isLeapYear(date.year);
var month: u4 = 1;
while (month < date.month) : (month += 1) {
const days: u64 = std.time.epoch.getDaysInMonth(
@as(std.time.epoch.YearLeapKind, @enumFromInt(@intFromBool(is_leap))),
@as(std.time.epoch.Month, @enumFromInt(month)),
);
sec += days * std.time.epoch.secs_per_day;
}
}
sec += (date.day - 1) * @as(u64, std.time.epoch.secs_per_day);
sec += date.hour * @as(u64, 60 * 60);
sec += date.minute * @as(u64, 60);
sec += date.second;
return sec;
}
};
pub fn parseTimeDigits(text: *const [2]u8, min: u8, max: u8) !u8 {
const result = if (use_vectors) result: {
const nn: @Vector(2, u16) = .{ text[0], text[1] };
const zero: @Vector(2, u16) = .{ '0', '0' };
const mm: @Vector(2, u16) = .{ 10, 1 };
break :result @reduce(.Add, (nn -% zero) *% mm);
} else std.fmt.parseInt(u8, text, 10) catch return error.CertificateTimeInvalid;
if (result < min) return error.CertificateTimeInvalid;
if (result > max) return error.CertificateTimeInvalid;
return @truncate(result);
}
test parseTimeDigits {
const expectEqual = std.testing.expectEqual;
try expectEqual(@as(u8, 0), try parseTimeDigits("00", 0, 99));
try expectEqual(@as(u8, 99), try parseTimeDigits("99", 0, 99));
try expectEqual(@as(u8, 42), try parseTimeDigits("42", 0, 99));
const expectError = std.testing.expectError;
try expectError(error.CertificateTimeInvalid, parseTimeDigits("13", 1, 12));
try expectError(error.CertificateTimeInvalid, parseTimeDigits("00", 1, 12));
try expectError(error.CertificateTimeInvalid, parseTimeDigits("Di", 0, 99));
}
pub fn parseYear4(text: *const [4]u8) !u16 {
const result = if (use_vectors) result: {
const nnnn: @Vector(4, u32) = .{ text[0], text[1], text[2], text[3] };
const zero: @Vector(4, u32) = .{ '0', '0', '0', '0' };
const mmmm: @Vector(4, u32) = .{ 1000, 100, 10, 1 };
break :result @reduce(.Add, (nnnn -% zero) *% mmmm);
} else std.fmt.parseInt(u16, text, 10) catch return error.CertificateTimeInvalid;
if (result > 9999) return error.CertificateTimeInvalid;
return @truncate(result);
}
test parseYear4 {
const expectEqual = std.testing.expectEqual;
try expectEqual(@as(u16, 0), try parseYear4("0000"));
try expectEqual(@as(u16, 9999), try parseYear4("9999"));
try expectEqual(@as(u16, 1988), try parseYear4("1988"));
const expectError = std.testing.expectError;
try expectError(error.CertificateTimeInvalid, parseYear4("999b"));
try expectError(error.CertificateTimeInvalid, parseYear4("crap"));
try expectError(error.CertificateTimeInvalid, parseYear4("r:bQ"));
}
pub fn parseAlgorithm(bytes: []const u8, element: der.Element) ParseEnumError!Algorithm {
return parseEnum(Algorithm, bytes, element);
}
pub fn parseAlgorithmCategory(bytes: []const u8, element: der.Element) ParseEnumError!AlgorithmCategory {
return parseEnum(AlgorithmCategory, bytes, element);
}
pub fn parseAttribute(bytes: []const u8, element: der.Element) ParseEnumError!Attribute {
return parseEnum(Attribute, bytes, element);
}
pub fn parseNamedCurve(bytes: []const u8, element: der.Element) ParseEnumError!NamedCurve {
return parseEnum(NamedCurve, bytes, element);
}
pub fn parseExtensionId(bytes: []const u8, element: der.Element) ParseEnumError!ExtensionId {
return parseEnum(ExtensionId, bytes, element);
}
pub const ParseEnumError = error{ CertificateFieldHasWrongDataType, CertificateHasUnrecognizedObjectId };
fn parseEnum(comptime E: type, bytes: []const u8, element: der.Element) ParseEnumError!E {
if (element.identifier.tag != .object_identifier)
return error.CertificateFieldHasWrongDataType;
const oid_bytes = bytes[element.slice.start..element.slice.end];
return E.map.get(oid_bytes) orelse return error.CertificateHasUnrecognizedObjectId;
}
pub const ParseVersionError = error{ UnsupportedCertificateVersion, CertificateFieldHasInvalidLength };
pub fn parseVersion(bytes: []const u8, version_elem: der.Element) ParseVersionError!Version {
if (@as(u8, @bitCast(version_elem.identifier)) != 0xa0)
return .v1;
if (version_elem.slice.end - version_elem.slice.start != 3)
return error.CertificateFieldHasInvalidLength;
const encoded_version = bytes[version_elem.slice.start..version_elem.slice.end];
if (mem.eql(u8, encoded_version, "\x02\x01\x02")) {
return .v3;
} else if (mem.eql(u8, encoded_version, "\x02\x01\x01")) {
return .v2;
} else if (mem.eql(u8, encoded_version, "\x02\x01\x00")) {
return .v1;
}
return error.UnsupportedCertificateVersion;
}
fn verifyRsa(
comptime Hash: type,
message: []const u8,
sig: []const u8,
pub_key_algo: Parsed.PubKeyAlgo,
pub_key: []const u8,
) !void {
if (pub_key_algo != .rsaEncryption) return error.CertificateSignatureAlgorithmMismatch;
const pk_components = try rsa.PublicKey.parseDer(pub_key);
const exponent = pk_components.exponent;
const modulus = pk_components.modulus;
if (exponent.len > modulus.len) return error.CertificatePublicKeyInvalid;
if (sig.len != modulus.len) return error.CertificateSignatureInvalidLength;
const hash_der = switch (Hash) {
crypto.hash.Sha1 => [_]u8{
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e,
0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14,
},
crypto.hash.sha2.Sha224 => [_]u8{
0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05,
0x00, 0x04, 0x1c,
},
crypto.hash.sha2.Sha256 => [_]u8{
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20,
},
crypto.hash.sha2.Sha384 => [_]u8{
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
0x00, 0x04, 0x30,
},
crypto.hash.sha2.Sha512 => [_]u8{
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40,
},
else => @compileError("unreachable"),
};
var msg_hashed: [Hash.digest_length]u8 = undefined;
Hash.hash(message, &msg_hashed, .{});
switch (modulus.len) {
inline 128, 256, 384, 512 => |modulus_len| {
const ps_len = modulus_len - (hash_der.len + msg_hashed.len) - 3;
const em: [modulus_len]u8 =
[2]u8{ 0, 1 } ++
([1]u8{0xff} ** ps_len) ++
[1]u8{0} ++
hash_der ++
msg_hashed;
const public_key = rsa.PublicKey.fromBytes(exponent, modulus) catch return error.CertificateSignatureInvalid;
const em_dec = rsa.encrypt(modulus_len, sig[0..modulus_len].*, public_key) catch |err| switch (err) {
error.MessageTooLong => unreachable,
};
if (!mem.eql(u8, &em, &em_dec)) {
return error.CertificateSignatureInvalid;
}
},
else => {
return error.CertificateSignatureUnsupportedBitCount;
},
}
}
fn verify_ecdsa(
comptime Hash: type,
message: []const u8,
encoded_sig: []const u8,
pub_key_algo: Parsed.PubKeyAlgo,
sec1_pub_key: []const u8,
) !void {
const sig_named_curve = switch (pub_key_algo) {
.X9_62_id_ecPublicKey => |named_curve| named_curve,
else => return error.CertificateSignatureAlgorithmMismatch,
};
switch (sig_named_curve) {
.secp521r1 => {
return error.CertificateSignatureNamedCurveUnsupported;
},
inline .X9_62_prime256v1,
.secp384r1,
=> |curve| {
const Ecdsa = crypto.sign.ecdsa.Ecdsa(curve.Curve(), Hash);
const sig = Ecdsa.Signature.fromDer(encoded_sig) catch |err| switch (err) {
error.InvalidEncoding => return error.CertificateSignatureInvalid,
};
const pub_key = Ecdsa.PublicKey.fromSec1(sec1_pub_key) catch |err| switch (err) {
error.InvalidEncoding => return error.CertificateSignatureInvalid,
error.NonCanonical => return error.CertificateSignatureInvalid,
error.NotSquare => return error.CertificateSignatureInvalid,
};
sig.verify(message, pub_key) catch |err| switch (err) {
error.IdentityElement => return error.CertificateSignatureInvalid,
error.NonCanonical => return error.CertificateSignatureInvalid,
error.SignatureVerificationFailed => return error.CertificateSignatureInvalid,
};
},
}
}
fn verifyEd25519(
message: []const u8,
encoded_sig: []const u8,
pub_key_algo: Parsed.PubKeyAlgo,
encoded_pub_key: []const u8,
) !void {
if (pub_key_algo != .curveEd25519) return error.CertificateSignatureAlgorithmMismatch;
const Ed25519 = crypto.sign.Ed25519;
if (encoded_sig.len != Ed25519.Signature.encoded_length) return error.CertificateSignatureInvalid;
const sig = Ed25519.Signature.fromBytes(encoded_sig[0..Ed25519.Signature.encoded_length].*);
if (encoded_pub_key.len != Ed25519.PublicKey.encoded_length) return error.CertificateSignatureInvalid;
const pub_key = Ed25519.PublicKey.fromBytes(encoded_pub_key[0..Ed25519.PublicKey.encoded_length].*) catch |err| switch (err) {
error.NonCanonical => return error.CertificateSignatureInvalid,
};
sig.verify(message, pub_key) catch |err| switch (err) {
error.IdentityElement => return error.CertificateSignatureInvalid,
error.NonCanonical => return error.CertificateSignatureInvalid,
error.SignatureVerificationFailed => return error.CertificateSignatureInvalid,
error.InvalidEncoding => return error.CertificateSignatureInvalid,
error.WeakPublicKey => return error.CertificateSignatureInvalid,
};
}
const std = @import("../std.zig");
const crypto = std.crypto;
const mem = std.mem;
const Certificate = @This();
pub const der = struct {
pub const Class = enum(u2) {
universal,
application,
context_specific,
private,
};
pub const PC = enum(u1) {
primitive,
constructed,
};
pub const Identifier = packed struct(u8) {
tag: Tag,
pc: PC,
class: Class,
};
pub const Tag = enum(u5) {
boolean = 1,
integer = 2,
bitstring = 3,
octetstring = 4,
null = 5,
object_identifier = 6,
sequence = 16,
sequence_of = 17,
utc_time = 23,
generalized_time = 24,
_,
};
pub const Element = struct {
identifier: Identifier,
slice: Slice,
pub const Slice = struct {
start: u32,
end: u32,
pub const empty: Slice = .{ .start = 0, .end = 0 };
};
pub const ParseElementError = error{CertificateFieldHasInvalidLength};
pub fn parse(bytes: []const u8, index: u32) ParseElementError!Element {
var i = index;
const identifier = @as(Identifier, @bitCast(bytes[i]));
i += 1;
const size_byte = bytes[i];
i += 1;
if ((size_byte >> 7) == 0) {
return .{
.identifier = identifier,
.slice = .{
.start = i,
.end = i + size_byte,
},
};
}
const len_size = @as(u7, @truncate(size_byte));
if (len_size > @sizeOf(u32)) {
return error.CertificateFieldHasInvalidLength;
}
const end_i = i + len_size;
var long_form_size: u32 = 0;
while (i < end_i) : (i += 1) {
long_form_size = (long_form_size << 8) | bytes[i];
}
return .{
.identifier = identifier,
.slice = .{
.start = i,
.end = i + long_form_size,
},
};
}
};
};
test {
_ = Bundle;
}
pub const rsa = struct {
const max_modulus_bits = 4096;
const Uint = std.crypto.ff.Uint(max_modulus_bits);
const Modulus = std.crypto.ff.Modulus(max_modulus_bits);
const Fe = Modulus.Fe;
pub const PSSSignature = struct {
pub fn fromBytes(comptime modulus_len: usize, msg: []const u8) [modulus_len]u8 {
var result = [1]u8{0} ** modulus_len;
std.mem.copyForwards(u8, &result, msg);
return result;
}
pub fn verify(comptime modulus_len: usize, sig: [modulus_len]u8, msg: []const u8, public_key: PublicKey, comptime Hash: type) !void {
const mod_bits = public_key.n.bits();
const em_dec = try encrypt(modulus_len, sig, public_key);
EMSA_PSS_VERIFY(msg, &em_dec, mod_bits - 1, Hash.digest_length, Hash) catch unreachable;
}
fn EMSA_PSS_VERIFY(msg: []const u8, em: []const u8, emBit: usize, sLen: usize, comptime Hash: type) !void {
// 1. If the length of M is greater than the input limitation for
// the hash function (2^61 - 1 octets for SHA-1), output
// "inconsistent" and stop.
// All the cryptographic hash functions in the standard library have a limit of >= 2^61 - 1.
// Even then, this check is only there for paranoia. In the context of TLS certifcates, emBit cannot exceed 4096.
if (emBit >= 1 << 61) return error.InvalidSignature;
// emLen = \ceil(emBits/8)
const emLen = ((emBit - 1) / 8) + 1;
std.debug.assert(emLen == em.len);
// 2. Let mHash = Hash(M), an octet string of length hLen.
var mHash: [Hash.digest_length]u8 = undefined;
Hash.hash(msg, &mHash, .{});
// 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
if (emLen < Hash.digest_length + sLen + 2) {
return error.InvalidSignature;
}
// 4. If the rightmost octet of EM does not have hexadecimal value
// 0xbc, output "inconsistent" and stop.
if (em[em.len - 1] != 0xbc) {
return error.InvalidSignature;
}
// 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM,
// and let H be the next hLen octets.
const maskedDB = em[0..(emLen - Hash.digest_length - 1)];
const h = em[(emLen - Hash.digest_length - 1)..(emLen - 1)][0..Hash.digest_length];
// 6. If the leftmost 8emLen - emBits bits of the leftmost octet in
// maskedDB are not all equal to zero, output "inconsistent" and
// stop.
const zero_bits = emLen * 8 - emBit;
var mask: u8 = maskedDB[0];
var i: usize = 0;
while (i < 8 - zero_bits) : (i += 1) {
mask = mask >> 1;
}
if (mask != 0) {
return error.InvalidSignature;
}
// 7. Let dbMask = MGF(H, emLen - hLen - 1).
const mgf_len = emLen - Hash.digest_length - 1;
var mgf_out_buf: [512]u8 = undefined;
if (mgf_len > mgf_out_buf.len) { // Modulus > 4096 bits
return error.InvalidSignature;
}
const mgf_out = mgf_out_buf[0 .. ((mgf_len - 1) / Hash.digest_length + 1) * Hash.digest_length];
var dbMask = try MGF1(Hash, mgf_out, h, mgf_len);
// 8. Let DB = maskedDB \xor dbMask.
i = 0;
while (i < dbMask.len) : (i += 1) {
dbMask[i] = maskedDB[i] ^ dbMask[i];
}
// 9. Set the leftmost 8emLen - emBits bits of the leftmost octet
// in DB to zero.
i = 0;
mask = 0;
while (i < 8 - zero_bits) : (i += 1) {
mask = mask << 1;
mask += 1;
}
dbMask[0] = dbMask[0] & mask;
// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not
// zero or if the octet at position emLen - hLen - sLen - 1 (the
// leftmost position is "position 1") does not have hexadecimal
// value 0x01, output "inconsistent" and stop.
if (dbMask[mgf_len - sLen - 2] != 0x00) {
return error.InvalidSignature;
}
if (dbMask[mgf_len - sLen - 1] != 0x01) {
return error.InvalidSignature;
}
// 11. Let salt be the last sLen octets of DB.
const salt = dbMask[(mgf_len - sLen)..];
// 12. Let
// M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
// M' is an octet string of length 8 + hLen + sLen with eight
// initial zero octets.
if (sLen > Hash.digest_length) { // A seed larger than the hash length would be useless
return error.InvalidSignature;
}
var m_p_buf: [8 + Hash.digest_length + Hash.digest_length]u8 = undefined;
var m_p = m_p_buf[0 .. 8 + Hash.digest_length + sLen];
std.mem.copyForwards(u8, m_p, &([_]u8{0} ** 8));
std.mem.copyForwards(u8, m_p[8..], &mHash);
std.mem.copyForwards(u8, m_p[(8 + Hash.digest_length)..], salt);
// 13. Let H' = Hash(M'), an octet string of length hLen.
var h_p: [Hash.digest_length]u8 = undefined;
Hash.hash(m_p, &h_p, .{});
// 14. If H = H', output "consistent". Otherwise, output
// "inconsistent".
if (!std.mem.eql(u8, h, &h_p)) {
return error.InvalidSignature;
}
}
fn MGF1(comptime Hash: type, out: []u8, seed: *const [Hash.digest_length]u8, len: usize) ![]u8 {
var counter: usize = 0;
var idx: usize = 0;
var c: [4]u8 = undefined;
var hash: [Hash.digest_length + c.len]u8 = undefined;
@memcpy(hash[0..Hash.digest_length], seed);
var hashed: [Hash.digest_length]u8 = undefined;
while (idx < len) {
c[0] = @as(u8, @intCast((counter >> 24) & 0xFF));
c[1] = @as(u8, @intCast((counter >> 16) & 0xFF));
c[2] = @as(u8, @intCast((counter >> 8) & 0xFF));
c[3] = @as(u8, @intCast(counter & 0xFF));
std.mem.copyForwards(u8, hash[seed.len..], &c);
Hash.hash(&hash, &hashed, .{});
std.mem.copyForwards(u8, out[idx..], &hashed);
idx += hashed.len;
counter += 1;
}
return out[0..len];
}
};
pub const PublicKey = struct {
n: Modulus,
e: Fe,
pub fn fromBytes(pub_bytes: []const u8, modulus_bytes: []const u8) !PublicKey {
// Reject modulus below 512 bits.
// 512-bit RSA was factored in 1999, so this limit barely means anything,
// but establish some limit now to ratchet in what we can.
const _n = Modulus.fromBytes(modulus_bytes, .big) catch return error.CertificatePublicKeyInvalid;
if (_n.bits() < 512) return error.CertificatePublicKeyInvalid;
// Exponent must be odd and greater than 2.
// Also, it must be less than 2^32 to mitigate DoS attacks.
// Windows CryptoAPI doesn't support values larger than 32 bits [1], so it is
// unlikely that exponents larger than 32 bits are being used for anything
// Windows commonly does.
// [1] https://learn.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-rsapubkey
if (pub_bytes.len > 4) return error.CertificatePublicKeyInvalid;
const _e = Fe.fromBytes(_n, pub_bytes, .big) catch return error.CertificatePublicKeyInvalid;
if (!_e.isOdd()) return error.CertificatePublicKeyInvalid;
const e_v = _e.toPrimitive(u32) catch return error.CertificatePublicKeyInvalid;
if (e_v < 2) return error.CertificatePublicKeyInvalid;
return .{
.n = _n,
.e = _e,
};
}
pub fn parseDer(pub_key: []const u8) !struct { modulus: []const u8, exponent: []const u8 } {
const pub_key_seq = try der.Element.parse(pub_key, 0);
if (pub_key_seq.identifier.tag != .sequence) return error.CertificateFieldHasWrongDataType;
const modulus_elem = try der.Element.parse(pub_key, pub_key_seq.slice.start);
if (modulus_elem.identifier.tag != .integer) return error.CertificateFieldHasWrongDataType;
const exponent_elem = try der.Element.parse(pub_key, modulus_elem.slice.end);
if (exponent_elem.identifier.tag != .integer) return error.CertificateFieldHasWrongDataType;
// Skip over meaningless zeroes in the modulus.
const modulus_raw = pub_key[modulus_elem.slice.start..modulus_elem.slice.end];
const modulus_offset = for (modulus_raw, 0..) |byte, i| {
if (byte != 0) break i;
} else modulus_raw.len;
return .{
.modulus = modulus_raw[modulus_offset..],
.exponent = pub_key[exponent_elem.slice.start..exponent_elem.slice.end],
};
}
};
fn encrypt(comptime modulus_len: usize, msg: [modulus_len]u8, public_key: PublicKey) ![modulus_len]u8 {
const m = Fe.fromBytes(public_key.n, &msg, .big) catch return error.MessageTooLong;
const e = public_key.n.powPublic(m, public_key.e) catch unreachable;
var res: [modulus_len]u8 = undefined;
e.toBytes(&res, .big) catch unreachable;
return res;
}
};
const use_vectors = @import("builtin").zig_backend != .stage2_x86_64;