zig/lib/std/crypto/scrypt.zig
2023-11-19 09:55:07 +00:00

717 lines
25 KiB
Zig

// https://tools.ietf.org/html/rfc7914
// https://github.com/golang/crypto/blob/master/scrypt/scrypt.go
// https://github.com/Tarsnap/scrypt
const std = @import("std");
const crypto = std.crypto;
const fmt = std.fmt;
const io = std.io;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const pwhash = crypto.pwhash;
const phc_format = @import("phc_encoding.zig");
const HmacSha256 = crypto.auth.hmac.sha2.HmacSha256;
const KdfError = pwhash.KdfError;
const HasherError = pwhash.HasherError;
const EncodingError = phc_format.Error;
const Error = pwhash.Error;
const max_size = math.maxInt(usize);
const max_int = max_size >> 1;
const default_salt_len = 32;
const default_hash_len = 32;
const max_salt_len = 64;
const max_hash_len = 64;
fn blockCopy(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
@memcpy(dst[0 .. n * 16], src[0 .. n * 16]);
}
fn blockXor(dst: []align(16) u32, src: []align(16) const u32, n: usize) void {
for (src[0 .. n * 16], 0..) |v, i| {
dst[i] ^= v;
}
}
const QuarterRound = struct { a: usize, b: usize, c: usize, d: u6 };
fn Rp(a: usize, b: usize, c: usize, d: u6) QuarterRound {
return QuarterRound{ .a = a, .b = b, .c = c, .d = d };
}
fn salsa8core(b: *align(16) [16]u32) void {
const arx_steps = comptime [_]QuarterRound{
Rp(4, 0, 12, 7), Rp(8, 4, 0, 9), Rp(12, 8, 4, 13), Rp(0, 12, 8, 18),
Rp(9, 5, 1, 7), Rp(13, 9, 5, 9), Rp(1, 13, 9, 13), Rp(5, 1, 13, 18),
Rp(14, 10, 6, 7), Rp(2, 14, 10, 9), Rp(6, 2, 14, 13), Rp(10, 6, 2, 18),
Rp(3, 15, 11, 7), Rp(7, 3, 15, 9), Rp(11, 7, 3, 13), Rp(15, 11, 7, 18),
Rp(1, 0, 3, 7), Rp(2, 1, 0, 9), Rp(3, 2, 1, 13), Rp(0, 3, 2, 18),
Rp(6, 5, 4, 7), Rp(7, 6, 5, 9), Rp(4, 7, 6, 13), Rp(5, 4, 7, 18),
Rp(11, 10, 9, 7), Rp(8, 11, 10, 9), Rp(9, 8, 11, 13), Rp(10, 9, 8, 18),
Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18),
};
var x = b.*;
var j: usize = 0;
while (j < 8) : (j += 2) {
inline for (arx_steps) |r| {
x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d);
}
}
j = 0;
while (j < 16) : (j += 1) {
b[j] +%= x[j];
}
}
fn salsaXor(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32) void {
blockXor(tmp, in, 1);
salsa8core(tmp);
blockCopy(out, tmp, 1);
}
fn blockMix(tmp: *align(16) [16]u32, in: []align(16) const u32, out: []align(16) u32, r: u30) void {
blockCopy(tmp, @alignCast(in[(2 * r - 1) * 16 ..]), 1);
var i: usize = 0;
while (i < 2 * r) : (i += 2) {
salsaXor(tmp, @alignCast(in[i * 16 ..]), @alignCast(out[i * 8 ..]));
salsaXor(tmp, @alignCast(in[i * 16 + 16 ..]), @alignCast(out[i * 8 + r * 16 ..]));
}
}
fn integerify(b: []align(16) const u32, r: u30) u64 {
const j = (2 * r - 1) * 16;
return @as(u64, b[j]) | @as(u64, b[j + 1]) << 32;
}
fn smix(b: []align(16) u8, r: u30, n: usize, v: []align(16) u32, xy: []align(16) u32) void {
const x: []align(16) u32 = @alignCast(xy[0 .. 32 * r]);
const y: []align(16) u32 = @alignCast(xy[32 * r ..]);
for (x, 0..) |*v1, j| {
v1.* = mem.readInt(u32, b[4 * j ..][0..4], .little);
}
var tmp: [16]u32 align(16) = undefined;
var i: usize = 0;
while (i < n) : (i += 2) {
blockCopy(@alignCast(v[i * (32 * r) ..]), x, 2 * r);
blockMix(&tmp, x, y, r);
blockCopy(@alignCast(v[(i + 1) * (32 * r) ..]), y, 2 * r);
blockMix(&tmp, y, x, r);
}
i = 0;
while (i < n) : (i += 2) {
var j = @as(usize, @intCast(integerify(x, r) & (n - 1)));
blockXor(x, @alignCast(v[j * (32 * r) ..]), 2 * r);
blockMix(&tmp, x, y, r);
j = @as(usize, @intCast(integerify(y, r) & (n - 1)));
blockXor(y, @alignCast(v[j * (32 * r) ..]), 2 * r);
blockMix(&tmp, y, x, r);
}
for (x, 0..) |v1, j| {
mem.writeInt(u32, b[4 * j ..][0..4], v1, .little);
}
}
/// Scrypt parameters
pub const Params = struct {
const Self = @This();
/// The CPU/Memory cost parameter [ln] is log2(N).
ln: u6,
/// The [r]esource usage parameter specifies the block size.
r: u30,
/// The [p]arallelization parameter.
/// A large value of [p] can be used to increase the computational cost of scrypt without
/// increasing the memory usage.
p: u30,
/// Baseline parameters for interactive logins
pub const interactive = Self.fromLimits(524288, 16777216);
/// Baseline parameters for offline usage
pub const sensitive = Self.fromLimits(33554432, 1073741824);
/// Create parameters from ops and mem limits, where mem_limit given in bytes
pub fn fromLimits(ops_limit: u64, mem_limit: usize) Self {
const ops = @max(32768, ops_limit);
const r: u30 = 8;
if (ops < mem_limit / 32) {
const max_n = ops / (r * 4);
return Self{ .r = r, .p = 1, .ln = @as(u6, @intCast(math.log2(max_n))) };
} else {
const max_n = mem_limit / (@as(usize, @intCast(r)) * 128);
const ln = @as(u6, @intCast(math.log2(max_n)));
const max_rp = @min(0x3fffffff, (ops / 4) / (@as(u64, 1) << ln));
return Self{ .r = r, .p = @as(u30, @intCast(max_rp / @as(u64, r))), .ln = ln };
}
}
};
/// Apply scrypt to generate a key from a password.
///
/// scrypt is defined in RFC 7914.
///
/// allocator: mem.Allocator.
///
/// derived_key: Slice of appropriate size for generated key. Generally 16 or 32 bytes in length.
/// May be uninitialized. All bytes will be overwritten.
/// Maximum size is `derived_key.len / 32 == 0xffff_ffff`.
///
/// password: Arbitrary sequence of bytes of any length.
///
/// salt: Arbitrary sequence of bytes of any length.
///
/// params: Params.
pub fn kdf(
allocator: mem.Allocator,
derived_key: []u8,
password: []const u8,
salt: []const u8,
params: Params,
) KdfError!void {
if (derived_key.len == 0) return KdfError.WeakParameters;
if (derived_key.len / 32 > 0xffff_ffff) return KdfError.OutputTooLong;
if (params.ln == 0 or params.r == 0 or params.p == 0) return KdfError.WeakParameters;
const n64 = @as(u64, 1) << params.ln;
if (n64 > max_size) return KdfError.WeakParameters;
const n = @as(usize, @intCast(n64));
if (@as(u64, params.r) * @as(u64, params.p) >= 1 << 30 or
params.r > max_int / 128 / @as(u64, params.p) or
params.r > max_int / 256 or
n > max_int / 128 / @as(u64, params.r)) return KdfError.WeakParameters;
const xy = try allocator.alignedAlloc(u32, 16, 64 * params.r);
defer allocator.free(xy);
const v = try allocator.alignedAlloc(u32, 16, 32 * n * params.r);
defer allocator.free(v);
var dk = try allocator.alignedAlloc(u8, 16, params.p * 128 * params.r);
defer allocator.free(dk);
try pwhash.pbkdf2(dk, password, salt, 1, HmacSha256);
var i: u32 = 0;
while (i < params.p) : (i += 1) {
smix(@alignCast(dk[i * 128 * params.r ..]), params.r, n, v, xy);
}
try pwhash.pbkdf2(derived_key, password, dk, 1, HmacSha256);
}
const crypt_format = struct {
/// String prefix for scrypt
pub const prefix = "$7$";
/// Standard type for a set of scrypt parameters, with the salt and hash.
pub fn HashResult(comptime crypt_max_hash_len: usize) type {
return struct {
ln: u6,
r: u30,
p: u30,
salt: []const u8,
hash: BinValue(crypt_max_hash_len),
};
}
const Codec = CustomB64Codec("./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".*);
/// A wrapped binary value whose maximum size is `max_len`.
///
/// This type must be used whenever a binary value is encoded in a PHC-formatted string.
/// This includes `salt`, `hash`, and any other binary parameters such as keys.
///
/// Once initialized, the actual value can be read with the `constSlice()` function.
pub fn BinValue(comptime max_len: usize) type {
return struct {
const Self = @This();
const capacity = max_len;
const max_encoded_length = Codec.encodedLen(max_len);
buf: [max_len]u8 = undefined,
len: usize = 0,
/// Wrap an existing byte slice
pub fn fromSlice(slice: []const u8) EncodingError!Self {
if (slice.len > capacity) return EncodingError.NoSpaceLeft;
var bin_value: Self = undefined;
@memcpy(bin_value.buf[0..slice.len], slice);
bin_value.len = slice.len;
return bin_value;
}
/// Return the slice containing the actual value.
pub fn constSlice(self: *const Self) []const u8 {
return self.buf[0..self.len];
}
fn fromB64(self: *Self, str: []const u8) !void {
const len = Codec.decodedLen(str.len);
if (len > self.buf.len) return EncodingError.NoSpaceLeft;
try Codec.decode(self.buf[0..len], str);
self.len = len;
}
fn toB64(self: *const Self, buf: []u8) ![]const u8 {
const value = self.constSlice();
const len = Codec.encodedLen(value.len);
if (len > buf.len) return EncodingError.NoSpaceLeft;
const encoded = buf[0..len];
Codec.encode(encoded, value);
return encoded;
}
};
}
/// Expand binary data into a salt for the modular crypt format.
pub fn saltFromBin(comptime len: usize, salt: [len]u8) [Codec.encodedLen(len)]u8 {
var buf: [Codec.encodedLen(len)]u8 = undefined;
Codec.encode(&buf, &salt);
return buf;
}
/// Deserialize a string into a structure `T` (matching `HashResult`).
pub fn deserialize(comptime T: type, str: []const u8) EncodingError!T {
var out: T = undefined;
if (str.len < 16) return EncodingError.InvalidEncoding;
if (!mem.eql(u8, prefix, str[0..3])) return EncodingError.InvalidEncoding;
out.ln = try Codec.intDecode(u6, str[3..4]);
out.r = try Codec.intDecode(u30, str[4..9]);
out.p = try Codec.intDecode(u30, str[9..14]);
var it = mem.splitScalar(u8, str[14..], '$');
const salt = it.first();
if (@hasField(T, "salt")) out.salt = salt;
const hash_str = it.next() orelse return EncodingError.InvalidEncoding;
if (@hasField(T, "hash")) try out.hash.fromB64(hash_str);
return out;
}
/// Serialize parameters into a string in modular crypt format.
pub fn serialize(params: anytype, str: []u8) EncodingError![]const u8 {
var buf = io.fixedBufferStream(str);
try serializeTo(params, buf.writer());
return buf.getWritten();
}
/// Compute the number of bytes required to serialize `params`
pub fn calcSize(params: anytype) usize {
var buf = io.countingWriter(io.null_writer);
serializeTo(params, buf.writer()) catch unreachable;
return @as(usize, @intCast(buf.bytes_written));
}
fn serializeTo(params: anytype, out: anytype) !void {
var header: [14]u8 = undefined;
header[0..3].* = prefix.*;
Codec.intEncode(header[3..4], params.ln);
Codec.intEncode(header[4..9], params.r);
Codec.intEncode(header[9..14], params.p);
try out.writeAll(&header);
try out.writeAll(params.salt);
try out.writeAll("$");
var buf: [@TypeOf(params.hash).max_encoded_length]u8 = undefined;
const hash_str = try params.hash.toB64(&buf);
try out.writeAll(hash_str);
}
/// Custom codec that maps 6 bits into 8 like regular Base64, but uses its own alphabet,
/// encodes bits in little-endian, and can also encode integers.
fn CustomB64Codec(comptime map: [64]u8) type {
return struct {
const map64 = map;
fn encodedLen(len: usize) usize {
return (len * 4 + 2) / 3;
}
fn decodedLen(len: usize) usize {
return len / 4 * 3 + (len % 4) * 3 / 4;
}
fn intEncode(dst: []u8, src: anytype) void {
var n = src;
for (dst) |*x| {
x.* = map64[@as(u6, @truncate(n))];
n = math.shr(@TypeOf(src), n, 6);
}
}
fn intDecode(comptime T: type, src: *const [(@bitSizeOf(T) + 5) / 6]u8) !T {
var v: T = 0;
for (src, 0..) |x, i| {
const vi = mem.indexOfScalar(u8, &map64, x) orelse return EncodingError.InvalidEncoding;
v |= @as(T, @intCast(vi)) << @as(math.Log2Int(T), @intCast(i * 6));
}
return v;
}
fn decode(dst: []u8, src: []const u8) !void {
std.debug.assert(dst.len == decodedLen(src.len));
var i: usize = 0;
while (i < src.len / 4) : (i += 1) {
mem.writeInt(u24, dst[i * 3 ..][0..3], try intDecode(u24, src[i * 4 ..][0..4]), .little);
}
const leftover = src[i * 4 ..];
var v: u24 = 0;
for (leftover, 0..) |_, j| {
v |= @as(u24, try intDecode(u6, leftover[j..][0..1])) << @as(u5, @intCast(j * 6));
}
for (dst[i * 3 ..], 0..) |*x, j| {
x.* = @as(u8, @truncate(v >> @as(u5, @intCast(j * 8))));
}
}
fn encode(dst: []u8, src: []const u8) void {
std.debug.assert(dst.len == encodedLen(src.len));
var i: usize = 0;
while (i < src.len / 3) : (i += 1) {
intEncode(dst[i * 4 ..][0..4], mem.readInt(u24, src[i * 3 ..][0..3], .little));
}
const leftover = src[i * 3 ..];
var v: u24 = 0;
for (leftover, 0..) |x, j| {
v |= @as(u24, x) << @as(u5, @intCast(j * 8));
}
intEncode(dst[i * 4 ..], v);
}
};
}
};
/// Hash and verify passwords using the PHC format.
const PhcFormatHasher = struct {
const alg_id = "scrypt";
const BinValue = phc_format.BinValue;
const HashResult = struct {
alg_id: []const u8,
ln: u6,
r: u30,
p: u30,
salt: BinValue(max_salt_len),
hash: BinValue(max_hash_len),
};
/// Return a non-deterministic hash of the password encoded as a PHC-format string
pub fn create(
allocator: mem.Allocator,
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
var salt: [default_salt_len]u8 = undefined;
crypto.random.bytes(&salt);
var hash: [default_hash_len]u8 = undefined;
try kdf(allocator, &hash, password, &salt, params);
return phc_format.serialize(HashResult{
.alg_id = alg_id,
.ln = params.ln,
.r = params.r,
.p = params.p,
.salt = try BinValue(max_salt_len).fromSlice(&salt),
.hash = try BinValue(max_hash_len).fromSlice(&hash),
}, buf);
}
/// Verify a password against a PHC-format encoded string
pub fn verify(
allocator: mem.Allocator,
str: []const u8,
password: []const u8,
) HasherError!void {
const hash_result = try phc_format.deserialize(HashResult, str);
if (!mem.eql(u8, hash_result.alg_id, alg_id)) return HasherError.PasswordVerificationFailed;
const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
const expected_hash = hash_result.hash.constSlice();
var hash_buf: [max_hash_len]u8 = undefined;
if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
const hash = hash_buf[0..expected_hash.len];
try kdf(allocator, hash, password, hash_result.salt.constSlice(), params);
if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
}
};
/// Hash and verify passwords using the modular crypt format.
const CryptFormatHasher = struct {
const BinValue = crypt_format.BinValue;
const HashResult = crypt_format.HashResult(max_hash_len);
/// Length of a string returned by the create() function
pub const pwhash_str_length: usize = 101;
/// Return a non-deterministic hash of the password encoded into the modular crypt format
pub fn create(
allocator: mem.Allocator,
password: []const u8,
params: Params,
buf: []u8,
) HasherError![]const u8 {
var salt_bin: [default_salt_len]u8 = undefined;
crypto.random.bytes(&salt_bin);
const salt = crypt_format.saltFromBin(salt_bin.len, salt_bin);
var hash: [default_hash_len]u8 = undefined;
try kdf(allocator, &hash, password, &salt, params);
return crypt_format.serialize(HashResult{
.ln = params.ln,
.r = params.r,
.p = params.p,
.salt = &salt,
.hash = try BinValue(max_hash_len).fromSlice(&hash),
}, buf);
}
/// Verify a password against a string in modular crypt format
pub fn verify(
allocator: mem.Allocator,
str: []const u8,
password: []const u8,
) HasherError!void {
const hash_result = try crypt_format.deserialize(HashResult, str);
const params = Params{ .ln = hash_result.ln, .r = hash_result.r, .p = hash_result.p };
const expected_hash = hash_result.hash.constSlice();
var hash_buf: [max_hash_len]u8 = undefined;
if (expected_hash.len > hash_buf.len) return HasherError.InvalidEncoding;
const hash = hash_buf[0..expected_hash.len];
try kdf(allocator, hash, password, hash_result.salt, params);
if (!mem.eql(u8, hash, expected_hash)) return HasherError.PasswordVerificationFailed;
}
};
/// Options for hashing a password.
///
/// Allocator is required for scrypt.
pub const HashOptions = struct {
allocator: ?mem.Allocator,
params: Params,
encoding: pwhash.Encoding,
};
/// Compute a hash of a password using the scrypt key derivation function.
/// The function returns a string that includes all the parameters required for verification.
pub fn strHash(
password: []const u8,
options: HashOptions,
out: []u8,
) Error![]const u8 {
const allocator = options.allocator orelse return Error.AllocatorRequired;
switch (options.encoding) {
.phc => return PhcFormatHasher.create(allocator, password, options.params, out),
.crypt => return CryptFormatHasher.create(allocator, password, options.params, out),
}
}
/// Options for hash verification.
///
/// Allocator is required for scrypt.
pub const VerifyOptions = struct {
allocator: ?mem.Allocator,
};
/// Verify that a previously computed hash is valid for a given password.
pub fn strVerify(
str: []const u8,
password: []const u8,
options: VerifyOptions,
) Error!void {
const allocator = options.allocator orelse return Error.AllocatorRequired;
if (mem.startsWith(u8, str, crypt_format.prefix)) {
return CryptFormatHasher.verify(allocator, str, password);
} else {
return PhcFormatHasher.verify(allocator, str, password);
}
}
// These tests take way too long to run, so I have disabled them.
const run_long_tests = false;
test "kdf" {
if (!run_long_tests) return error.SkipZigTest;
const password = "testpass";
const salt = "saltsalt";
var dk: [32]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 15, .r = 8, .p = 1 });
const hex = "1e0f97c3f6609024022fbe698da29c2fe53ef1087a8e396dc6d5d2a041e886de";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "kdf rfc 1" {
if (!run_long_tests) return error.SkipZigTest;
const password = "";
const salt = "";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 4, .r = 1, .p = 1 });
const hex = "77d6576238657b203b19ca42c18a0497f16b4844e3074ae8dfdffa3fede21442fcd0069ded0948f8326a753a0fc81f17e8d3e0fb2e0d3628cf35e20c38d18906";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "kdf rfc 2" {
if (!run_long_tests) return error.SkipZigTest;
const password = "password";
const salt = "NaCl";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 10, .r = 8, .p = 16 });
const hex = "fdbabe1c9d3472007856e7190d01e9fe7c6ad7cbc8237830e77376634b3731622eaf30d92e22a3886ff109279d9830dac727afb94a83ee6d8360cbdfa2cc0640";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "kdf rfc 3" {
if (!run_long_tests) return error.SkipZigTest;
const password = "pleaseletmein";
const salt = "SodiumChloride";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 14, .r = 8, .p = 1 });
const hex = "7023bdcb3afd7348461c06cd81fd38ebfda8fbba904f8e3ea9b543f6545da1f2d5432955613f0fcf62d49705242a9af9e61e85dc0d651e40dfcf017b45575887";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "kdf rfc 4" {
if (!run_long_tests) return error.SkipZigTest;
const password = "pleaseletmein";
const salt = "SodiumChloride";
var dk: [64]u8 = undefined;
try kdf(std.testing.allocator, &dk, password, salt, .{ .ln = 20, .r = 8, .p = 1 });
const hex = "2101cb9b6a511aaeaddbbe09cf70f881ec568d574a2ffd4dabe5ee9820adaa478e56fd8f4ba5d09ffa1c6d927c40f4c337304049e8a952fbcbf45c6fa77a41a4";
var bytes: [hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&bytes, hex);
try std.testing.expectEqualSlices(u8, &bytes, &dk);
}
test "password hashing (crypt format)" {
if (!run_long_tests) return error.SkipZigTest;
const alloc = std.testing.allocator;
const str = "$7$A6....1....TrXs5Zk6s8sWHpQgWDIXTR8kUU3s6Jc3s.DtdS8M2i4$a4ik5hGDN7foMuHOW.cp.CtX01UyCeO0.JAG.AHPpx5";
const password = "Y0!?iQa9M%5ekffW(`";
try CryptFormatHasher.verify(alloc, str, password);
const params = Params.interactive;
var buf: [CryptFormatHasher.pwhash_str_length]u8 = undefined;
const str2 = try CryptFormatHasher.create(alloc, password, params, &buf);
try CryptFormatHasher.verify(alloc, str2, password);
}
test "strHash and strVerify" {
if (!run_long_tests) return error.SkipZigTest;
const alloc = std.testing.allocator;
const password = "testpass";
const params = Params.interactive;
const verify_options = VerifyOptions{ .allocator = alloc };
var buf: [128]u8 = undefined;
{
const str = try strHash(
password,
.{ .allocator = alloc, .params = params, .encoding = .crypt },
&buf,
);
try strVerify(str, password, verify_options);
}
{
const str = try strHash(
password,
.{ .allocator = alloc, .params = params, .encoding = .phc },
&buf,
);
try strVerify(str, password, verify_options);
}
}
test "unix-scrypt" {
if (!run_long_tests) return error.SkipZigTest;
const alloc = std.testing.allocator;
// https://gitlab.com/jas/scrypt-unix-crypt/blob/master/unix-scrypt.txt
{
const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
const password = "pleaseletmein";
try strVerify(str, password, .{ .allocator = alloc });
}
// one of the libsodium test vectors
{
const str = "$7$B6....1....75gBMAGwfFWZqBdyF3WdTQnWdUsuTiWjG1fF9c1jiSD$tc8RoB3.Em3/zNgMLWo2u00oGIoTyJv4fl3Fl8Tix72";
const password = "^T5H$JYt39n%K*j:W]!1s?vg!:jGi]Ax?..l7[p0v:1jHTpla9;]bUN;?bWyCbtqg nrDFal+Jxl3,2`#^tFSu%v_+7iYse8-cCkNf!tD=KrW)";
try strVerify(str, password, .{ .allocator = alloc });
}
}
test "crypt format" {
const str = "$7$C6..../....SodiumChloride$kBGj9fHznVYFQMEn/qDCfrDevf9YDtcDdKvEqHJLV8D";
const params = try crypt_format.deserialize(crypt_format.HashResult(32), str);
var buf: [str.len]u8 = undefined;
const s1 = try crypt_format.serialize(params, &buf);
try std.testing.expectEqualStrings(s1, str);
}
test "kdf fast" {
const TestVector = struct {
password: []const u8,
salt: []const u8,
params: Params,
want: []const u8,
};
const test_vectors = [_]TestVector{
.{
.password = "p",
.salt = "s",
.params = .{ .ln = 1, .r = 1, .p = 1 },
.want = &([_]u8{
0x48, 0xb0, 0xd2, 0xa8, 0xa3, 0x27, 0x26, 0x11,
0x98, 0x4c, 0x50, 0xeb, 0xd6, 0x30, 0xaf, 0x52,
}),
},
};
inline for (test_vectors) |v| {
var dk: [v.want.len]u8 = undefined;
try kdf(std.testing.allocator, &dk, v.password, v.salt, v.params);
try std.testing.expectEqualSlices(u8, &dk, v.want);
}
}