zig/lib/std/math/log_int.zig
Ryan Liptak 16b3d1004e Remove redundant test name prefixes now that test names are fully qualified
Follow up to #19079, which made test names fully qualified.

This fixes tests that now-redundant information in their test names. For example here's a fully qualified test name before the changes in this commit:

"priority_queue.test.std.PriorityQueue: shrinkAndFree"

and the same test's name after the changes in this commit:

"priority_queue.test.shrinkAndFree"
2024-02-26 15:18:31 -08:00

129 lines
4.1 KiB
Zig

const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
const assert = std.debug.assert;
const Log2Int = math.Log2Int;
/// Returns the logarithm of `x` for the provided `base`, rounding down to the nearest integer.
/// Asserts that `base > 1` and `x > 0`.
pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T) {
const valid = switch (@typeInfo(T)) {
.ComptimeInt => true,
.Int => |IntType| IntType.signedness == .unsigned,
else => false,
};
if (!valid) @compileError("log_int requires an unsigned integer, found " ++ @typeName(T));
assert(base > 1 and x > 0);
if (base == 2) return math.log2_int(T, x);
// Let's denote by [y] the integer part of y.
// Throughout the iteration the following invariant is preserved:
// power = base ^ exponent
// Safety and termination.
//
// We never overflow inside the loop because when we enter the loop we have
// power <= [maxInt(T) / base]
// therefore
// power * base <= maxInt(T)
// is a valid multiplication for type `T` and
// exponent + 1 <= log(base, maxInt(T)) <= log2(maxInt(T)) <= maxInt(Log2Int(T))
// is a valid addition for type `Log2Int(T)`.
//
// This implies also termination because power is strictly increasing,
// hence it must eventually surpass [x / base] < maxInt(T) and we then exit the loop.
var exponent: Log2Int(T) = 0;
var power: T = 1;
while (power <= x / base) {
power *= base;
exponent += 1;
}
// If we never entered the loop we must have
// [x / base] < 1
// hence
// x <= [x / base] * base < base
// thus the result is 0. We can then return exponent, which is still 0.
//
// Otherwise, if we entered the loop at least once,
// when we exit the loop we have that power is exactly divisible by base and
// power / base <= [x / base] < power
// hence
// power <= [x / base] * base <= x < power * base
// This means that
// base^exponent <= x < base^(exponent+1)
// hence the result is exponent.
return exponent;
}
test "log_int" {
// Test all unsigned integers with 2, 3, ..., 64 bits.
// We cannot test 0 or 1 bits since base must be > 1.
inline for (2..64 + 1) |bits| {
const T = @Type(std.builtin.Type{
.Int = std.builtin.Type.Int{ .signedness = .unsigned, .bits = @intCast(bits) },
});
// for base = 2, 3, ..., min(maxInt(T),1024)
var base: T = 1;
while (base < math.maxInt(T) and base <= 1024) {
base += 1;
// test that `log_int(T, base, 1) == 0`
try testing.expectEqual(@as(Log2Int(T), 0), log_int(T, base, 1));
// For powers `pow = base^exp > 1` that fit inside T,
// test that `log_int` correctly detects the jump in the logarithm
// from `log(pow-1) == exp-1` to `log(pow) == exp`.
var exp: Log2Int(T) = 0;
var pow: T = 1;
while (pow <= math.maxInt(T) / base) {
exp += 1;
pow *= base;
try testing.expectEqual(exp - 1, log_int(T, base, pow - 1));
try testing.expectEqual(exp, log_int(T, base, pow));
}
}
}
}
test "log_int vs math.log2" {
const types = [_]type{ u2, u3, u4, u8, u16 };
inline for (types) |T| {
var n: T = 0;
while (n < math.maxInt(T)) {
n += 1;
const special = math.log2_int(T, n);
const general = log_int(T, 2, n);
try testing.expectEqual(special, general);
}
}
}
test "log_int vs math.log10" {
const types = [_]type{ u4, u5, u6, u8, u16 };
inline for (types) |T| {
var n: T = 0;
while (n < math.maxInt(T)) {
n += 1;
const special = math.log10_int(n);
const general = log_int(T, 10, n);
try testing.expectEqual(special, general);
}
}
}
test "log_int at comptime" {
const x = 59049; // 9 ** 5;
comptime {
if (math.log_int(comptime_int, 9, x) != 5) {
@compileError("log(9, 59049) should be 5");
}
}
}