mirror of
https://github.com/ziglang/zig.git
synced 2024-11-30 09:02:32 +00:00
3f9294c735
Previously, a relative path like `..` would: - Attempt to be normalized (i.e. remove . and .. without any path resolution), but would error with TooManyParentDirs - This would make wToPrefixedFileW run it through `RtlGetFullPathName_U` to do the necessary path resolution, but `RtlGetFullPathName_U` always resolves relative paths relative to the CWD Instead, when TooManyParentDirs occurs, we now look up the path of the passed in `dir` (if it's non-null) and append the relative path to it before giving it to `RtlGetFullPathName_U`. If `dir` is null, then we just give it RtlGetFullPathName_U directly and let it resolve it relative to the CWD. Closes #16779
1464 lines
56 KiB
Zig
1464 lines
56 KiB
Zig
const std = @import("std.zig");
|
|
const builtin = @import("builtin");
|
|
const unicode = std.unicode;
|
|
const io = std.io;
|
|
const fs = std.fs;
|
|
const os = std.os;
|
|
const process = std.process;
|
|
const File = std.fs.File;
|
|
const windows = os.windows;
|
|
const linux = os.linux;
|
|
const mem = std.mem;
|
|
const math = std.math;
|
|
const debug = std.debug;
|
|
const EnvMap = process.EnvMap;
|
|
const maxInt = std.math.maxInt;
|
|
const assert = std.debug.assert;
|
|
|
|
pub const ChildProcess = struct {
|
|
pub const Id = switch (builtin.os.tag) {
|
|
.windows => windows.HANDLE,
|
|
.wasi => void,
|
|
else => os.pid_t,
|
|
};
|
|
|
|
/// Available after calling `spawn()`. This becomes `undefined` after calling `wait()`.
|
|
/// On Windows this is the hProcess.
|
|
/// On POSIX this is the pid.
|
|
id: Id,
|
|
thread_handle: if (builtin.os.tag == .windows) windows.HANDLE else void,
|
|
|
|
allocator: mem.Allocator,
|
|
|
|
stdin: ?File,
|
|
stdout: ?File,
|
|
stderr: ?File,
|
|
|
|
term: ?(SpawnError!Term),
|
|
|
|
argv: []const []const u8,
|
|
|
|
/// Leave as null to use the current env map using the supplied allocator.
|
|
env_map: ?*const EnvMap,
|
|
|
|
stdin_behavior: StdIo,
|
|
stdout_behavior: StdIo,
|
|
stderr_behavior: StdIo,
|
|
|
|
/// Set to change the user id when spawning the child process.
|
|
uid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.uid_t,
|
|
|
|
/// Set to change the group id when spawning the child process.
|
|
gid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.gid_t,
|
|
|
|
/// Set to change the current working directory when spawning the child process.
|
|
cwd: ?[]const u8,
|
|
/// Set to change the current working directory when spawning the child process.
|
|
/// This is not yet implemented for Windows. See https://github.com/ziglang/zig/issues/5190
|
|
/// Once that is done, `cwd` will be deprecated in favor of this field.
|
|
cwd_dir: ?fs.Dir = null,
|
|
|
|
err_pipe: ?if (builtin.os.tag == .windows) void else [2]os.fd_t,
|
|
|
|
expand_arg0: Arg0Expand,
|
|
|
|
/// Darwin-only. Disable ASLR for the child process.
|
|
disable_aslr: bool = false,
|
|
|
|
/// Darwin-only. Start child process in suspended state as if SIGSTOP was sent.
|
|
start_suspended: bool = false,
|
|
|
|
/// Set to true to obtain rusage information for the child process.
|
|
/// Depending on the target platform and implementation status, the
|
|
/// requested statistics may or may not be available. If they are
|
|
/// available, then the `resource_usage_statistics` field will be populated
|
|
/// after calling `wait`.
|
|
/// On Linux and Darwin, this obtains rusage statistics from wait4().
|
|
request_resource_usage_statistics: bool = false,
|
|
|
|
/// This is available after calling wait if
|
|
/// `request_resource_usage_statistics` was set to `true` before calling
|
|
/// `spawn`.
|
|
resource_usage_statistics: ResourceUsageStatistics = .{},
|
|
|
|
pub const ResourceUsageStatistics = struct {
|
|
rusage: @TypeOf(rusage_init) = rusage_init,
|
|
|
|
/// Returns the peak resident set size of the child process, in bytes,
|
|
/// if available.
|
|
pub inline fn getMaxRss(rus: ResourceUsageStatistics) ?usize {
|
|
switch (builtin.os.tag) {
|
|
.linux => {
|
|
if (rus.rusage) |ru| {
|
|
return @as(usize, @intCast(ru.maxrss)) * 1024;
|
|
} else {
|
|
return null;
|
|
}
|
|
},
|
|
.windows => {
|
|
if (rus.rusage) |ru| {
|
|
return ru.PeakWorkingSetSize;
|
|
} else {
|
|
return null;
|
|
}
|
|
},
|
|
.macos, .ios => {
|
|
if (rus.rusage) |ru| {
|
|
// Darwin oddly reports in bytes instead of kilobytes.
|
|
return @as(usize, @intCast(ru.maxrss));
|
|
} else {
|
|
return null;
|
|
}
|
|
},
|
|
else => return null,
|
|
}
|
|
}
|
|
|
|
const rusage_init = switch (builtin.os.tag) {
|
|
.linux, .macos, .ios => @as(?std.os.rusage, null),
|
|
.windows => @as(?windows.VM_COUNTERS, null),
|
|
else => {},
|
|
};
|
|
};
|
|
|
|
pub const Arg0Expand = os.Arg0Expand;
|
|
|
|
pub const SpawnError = error{
|
|
OutOfMemory,
|
|
|
|
/// POSIX-only. `StdIo.Ignore` was selected and opening `/dev/null` returned ENODEV.
|
|
NoDevice,
|
|
|
|
/// Windows-only. One of:
|
|
/// * `cwd` was provided and it could not be re-encoded into UTF16LE, or
|
|
/// * The `PATH` or `PATHEXT` environment variable contained invalid UTF-8.
|
|
InvalidUtf8,
|
|
|
|
/// Windows-only. `cwd` was provided, but the path did not exist when spawning the child process.
|
|
CurrentWorkingDirectoryUnlinked,
|
|
} ||
|
|
os.ExecveError ||
|
|
os.SetIdError ||
|
|
os.ChangeCurDirError ||
|
|
windows.CreateProcessError ||
|
|
windows.GetProcessMemoryInfoError ||
|
|
windows.WaitForSingleObjectError;
|
|
|
|
pub const Term = union(enum) {
|
|
Exited: u8,
|
|
Signal: u32,
|
|
Stopped: u32,
|
|
Unknown: u32,
|
|
};
|
|
|
|
pub const StdIo = enum {
|
|
Inherit,
|
|
Ignore,
|
|
Pipe,
|
|
Close,
|
|
};
|
|
|
|
/// First argument in argv is the executable.
|
|
pub fn init(argv: []const []const u8, allocator: mem.Allocator) ChildProcess {
|
|
return .{
|
|
.allocator = allocator,
|
|
.argv = argv,
|
|
.id = undefined,
|
|
.thread_handle = undefined,
|
|
.err_pipe = null,
|
|
.term = null,
|
|
.env_map = null,
|
|
.cwd = null,
|
|
.uid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null,
|
|
.gid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null,
|
|
.stdin = null,
|
|
.stdout = null,
|
|
.stderr = null,
|
|
.stdin_behavior = StdIo.Inherit,
|
|
.stdout_behavior = StdIo.Inherit,
|
|
.stderr_behavior = StdIo.Inherit,
|
|
.expand_arg0 = .no_expand,
|
|
};
|
|
}
|
|
|
|
pub fn setUserName(self: *ChildProcess, name: []const u8) !void {
|
|
const user_info = try std.process.getUserInfo(name);
|
|
self.uid = user_info.uid;
|
|
self.gid = user_info.gid;
|
|
}
|
|
|
|
/// On success must call `kill` or `wait`.
|
|
/// After spawning the `id` is available.
|
|
pub fn spawn(self: *ChildProcess) SpawnError!void {
|
|
if (!std.process.can_spawn) {
|
|
@compileError("the target operating system cannot spawn processes");
|
|
}
|
|
|
|
if (builtin.os.tag == .windows) {
|
|
return self.spawnWindows();
|
|
} else {
|
|
return self.spawnPosix();
|
|
}
|
|
}
|
|
|
|
pub fn spawnAndWait(self: *ChildProcess) SpawnError!Term {
|
|
try self.spawn();
|
|
return self.wait();
|
|
}
|
|
|
|
/// Forcibly terminates child process and then cleans up all resources.
|
|
pub fn kill(self: *ChildProcess) !Term {
|
|
if (builtin.os.tag == .windows) {
|
|
return self.killWindows(1);
|
|
} else {
|
|
return self.killPosix();
|
|
}
|
|
}
|
|
|
|
pub fn killWindows(self: *ChildProcess, exit_code: windows.UINT) !Term {
|
|
if (self.term) |term| {
|
|
self.cleanupStreams();
|
|
return term;
|
|
}
|
|
|
|
try windows.TerminateProcess(self.id, exit_code);
|
|
try self.waitUnwrappedWindows();
|
|
return self.term.?;
|
|
}
|
|
|
|
pub fn killPosix(self: *ChildProcess) !Term {
|
|
if (self.term) |term| {
|
|
self.cleanupStreams();
|
|
return term;
|
|
}
|
|
try os.kill(self.id, os.SIG.TERM);
|
|
try self.waitUnwrapped();
|
|
return self.term.?;
|
|
}
|
|
|
|
/// Blocks until child process terminates and then cleans up all resources.
|
|
pub fn wait(self: *ChildProcess) !Term {
|
|
const term = if (builtin.os.tag == .windows)
|
|
try self.waitWindows()
|
|
else
|
|
try self.waitPosix();
|
|
|
|
self.id = undefined;
|
|
|
|
return term;
|
|
}
|
|
|
|
pub const ExecResult = struct {
|
|
term: Term,
|
|
stdout: []u8,
|
|
stderr: []u8,
|
|
};
|
|
|
|
fn fifoToOwnedArrayList(fifo: *std.io.PollFifo) std.ArrayList(u8) {
|
|
if (fifo.head > 0) {
|
|
@memcpy(fifo.buf[0..fifo.count], fifo.buf[fifo.head..][0..fifo.count]);
|
|
}
|
|
const result = std.ArrayList(u8){
|
|
.items = fifo.buf[0..fifo.count],
|
|
.capacity = fifo.buf.len,
|
|
.allocator = fifo.allocator,
|
|
};
|
|
fifo.* = std.io.PollFifo.init(fifo.allocator);
|
|
return result;
|
|
}
|
|
|
|
/// Collect the output from the process's stdout and stderr. Will return once all output
|
|
/// has been collected. This does not mean that the process has ended. `wait` should still
|
|
/// be called to wait for and clean up the process.
|
|
///
|
|
/// The process must be started with stdout_behavior and stderr_behavior == .Pipe
|
|
pub fn collectOutput(
|
|
child: ChildProcess,
|
|
stdout: *std.ArrayList(u8),
|
|
stderr: *std.ArrayList(u8),
|
|
max_output_bytes: usize,
|
|
) !void {
|
|
debug.assert(child.stdout_behavior == .Pipe);
|
|
debug.assert(child.stderr_behavior == .Pipe);
|
|
|
|
// we could make this work with multiple allocators but YAGNI
|
|
if (stdout.allocator.ptr != stderr.allocator.ptr or
|
|
stdout.allocator.vtable != stderr.allocator.vtable)
|
|
@panic("ChildProcess.collectOutput only supports 1 allocator");
|
|
|
|
var poller = std.io.poll(stdout.allocator, enum { stdout, stderr }, .{
|
|
.stdout = child.stdout.?,
|
|
.stderr = child.stderr.?,
|
|
});
|
|
defer poller.deinit();
|
|
|
|
while (try poller.poll()) {
|
|
if (poller.fifo(.stdout).count > max_output_bytes)
|
|
return error.StdoutStreamTooLong;
|
|
if (poller.fifo(.stderr).count > max_output_bytes)
|
|
return error.StderrStreamTooLong;
|
|
}
|
|
|
|
stdout.* = fifoToOwnedArrayList(poller.fifo(.stdout));
|
|
stderr.* = fifoToOwnedArrayList(poller.fifo(.stderr));
|
|
}
|
|
|
|
pub const ExecError = os.GetCwdError || os.ReadError || SpawnError || os.PollError || error{
|
|
StdoutStreamTooLong,
|
|
StderrStreamTooLong,
|
|
};
|
|
|
|
/// Spawns a child process, waits for it, collecting stdout and stderr, and then returns.
|
|
/// If it succeeds, the caller owns result.stdout and result.stderr memory.
|
|
pub fn exec(args: struct {
|
|
allocator: mem.Allocator,
|
|
argv: []const []const u8,
|
|
cwd: ?[]const u8 = null,
|
|
cwd_dir: ?fs.Dir = null,
|
|
env_map: ?*const EnvMap = null,
|
|
max_output_bytes: usize = 50 * 1024,
|
|
expand_arg0: Arg0Expand = .no_expand,
|
|
}) ExecError!ExecResult {
|
|
var child = ChildProcess.init(args.argv, args.allocator);
|
|
child.stdin_behavior = .Ignore;
|
|
child.stdout_behavior = .Pipe;
|
|
child.stderr_behavior = .Pipe;
|
|
child.cwd = args.cwd;
|
|
child.cwd_dir = args.cwd_dir;
|
|
child.env_map = args.env_map;
|
|
child.expand_arg0 = args.expand_arg0;
|
|
|
|
var stdout = std.ArrayList(u8).init(args.allocator);
|
|
var stderr = std.ArrayList(u8).init(args.allocator);
|
|
errdefer {
|
|
stdout.deinit();
|
|
stderr.deinit();
|
|
}
|
|
|
|
try child.spawn();
|
|
try child.collectOutput(&stdout, &stderr, args.max_output_bytes);
|
|
|
|
return ExecResult{
|
|
.term = try child.wait(),
|
|
.stdout = try stdout.toOwnedSlice(),
|
|
.stderr = try stderr.toOwnedSlice(),
|
|
};
|
|
}
|
|
|
|
fn waitWindows(self: *ChildProcess) !Term {
|
|
if (self.term) |term| {
|
|
self.cleanupStreams();
|
|
return term;
|
|
}
|
|
|
|
try self.waitUnwrappedWindows();
|
|
return self.term.?;
|
|
}
|
|
|
|
fn waitPosix(self: *ChildProcess) !Term {
|
|
if (self.term) |term| {
|
|
self.cleanupStreams();
|
|
return term;
|
|
}
|
|
|
|
try self.waitUnwrapped();
|
|
return self.term.?;
|
|
}
|
|
|
|
fn waitUnwrappedWindows(self: *ChildProcess) !void {
|
|
const result = windows.WaitForSingleObjectEx(self.id, windows.INFINITE, false);
|
|
|
|
self.term = @as(SpawnError!Term, x: {
|
|
var exit_code: windows.DWORD = undefined;
|
|
if (windows.kernel32.GetExitCodeProcess(self.id, &exit_code) == 0) {
|
|
break :x Term{ .Unknown = 0 };
|
|
} else {
|
|
break :x Term{ .Exited = @as(u8, @truncate(exit_code)) };
|
|
}
|
|
});
|
|
|
|
if (self.request_resource_usage_statistics) {
|
|
self.resource_usage_statistics.rusage = try windows.GetProcessMemoryInfo(self.id);
|
|
}
|
|
|
|
os.close(self.id);
|
|
os.close(self.thread_handle);
|
|
self.cleanupStreams();
|
|
return result;
|
|
}
|
|
|
|
fn waitUnwrapped(self: *ChildProcess) !void {
|
|
const res: os.WaitPidResult = res: {
|
|
if (self.request_resource_usage_statistics) {
|
|
switch (builtin.os.tag) {
|
|
.linux, .macos, .ios => {
|
|
var ru: std.os.rusage = undefined;
|
|
const res = os.wait4(self.id, 0, &ru);
|
|
self.resource_usage_statistics.rusage = ru;
|
|
break :res res;
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
|
|
break :res os.waitpid(self.id, 0);
|
|
};
|
|
const status = res.status;
|
|
self.cleanupStreams();
|
|
self.handleWaitResult(status);
|
|
}
|
|
|
|
fn handleWaitResult(self: *ChildProcess, status: u32) void {
|
|
self.term = self.cleanupAfterWait(status);
|
|
}
|
|
|
|
fn cleanupStreams(self: *ChildProcess) void {
|
|
if (self.stdin) |*stdin| {
|
|
stdin.close();
|
|
self.stdin = null;
|
|
}
|
|
if (self.stdout) |*stdout| {
|
|
stdout.close();
|
|
self.stdout = null;
|
|
}
|
|
if (self.stderr) |*stderr| {
|
|
stderr.close();
|
|
self.stderr = null;
|
|
}
|
|
}
|
|
|
|
fn cleanupAfterWait(self: *ChildProcess, status: u32) !Term {
|
|
if (self.err_pipe) |err_pipe| {
|
|
defer destroyPipe(err_pipe);
|
|
|
|
if (builtin.os.tag == .linux) {
|
|
var fd = [1]std.os.pollfd{std.os.pollfd{
|
|
.fd = err_pipe[0],
|
|
.events = std.os.POLL.IN,
|
|
.revents = undefined,
|
|
}};
|
|
|
|
// Check if the eventfd buffer stores a non-zero value by polling
|
|
// it, that's the error code returned by the child process.
|
|
_ = std.os.poll(&fd, 0) catch unreachable;
|
|
|
|
// According to eventfd(2) the descriptor is readable if the counter
|
|
// has a value greater than 0
|
|
if ((fd[0].revents & std.os.POLL.IN) != 0) {
|
|
const err_int = try readIntFd(err_pipe[0]);
|
|
return @as(SpawnError, @errSetCast(@errorFromInt(err_int)));
|
|
}
|
|
} else {
|
|
// Write maxInt(ErrInt) to the write end of the err_pipe. This is after
|
|
// waitpid, so this write is guaranteed to be after the child
|
|
// pid potentially wrote an error. This way we can do a blocking
|
|
// read on the error pipe and either get maxInt(ErrInt) (no error) or
|
|
// an error code.
|
|
try writeIntFd(err_pipe[1], maxInt(ErrInt));
|
|
const err_int = try readIntFd(err_pipe[0]);
|
|
// Here we potentially return the fork child's error from the parent
|
|
// pid.
|
|
if (err_int != maxInt(ErrInt)) {
|
|
return @as(SpawnError, @errSetCast(@errorFromInt(err_int)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return statusToTerm(status);
|
|
}
|
|
|
|
fn statusToTerm(status: u32) Term {
|
|
return if (os.W.IFEXITED(status))
|
|
Term{ .Exited = os.W.EXITSTATUS(status) }
|
|
else if (os.W.IFSIGNALED(status))
|
|
Term{ .Signal = os.W.TERMSIG(status) }
|
|
else if (os.W.IFSTOPPED(status))
|
|
Term{ .Stopped = os.W.STOPSIG(status) }
|
|
else
|
|
Term{ .Unknown = status };
|
|
}
|
|
|
|
fn spawnPosix(self: *ChildProcess) SpawnError!void {
|
|
const pipe_flags = if (io.is_async) os.O.NONBLOCK else 0;
|
|
const stdin_pipe = if (self.stdin_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined;
|
|
errdefer if (self.stdin_behavior == StdIo.Pipe) {
|
|
destroyPipe(stdin_pipe);
|
|
};
|
|
|
|
const stdout_pipe = if (self.stdout_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined;
|
|
errdefer if (self.stdout_behavior == StdIo.Pipe) {
|
|
destroyPipe(stdout_pipe);
|
|
};
|
|
|
|
const stderr_pipe = if (self.stderr_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined;
|
|
errdefer if (self.stderr_behavior == StdIo.Pipe) {
|
|
destroyPipe(stderr_pipe);
|
|
};
|
|
|
|
const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore);
|
|
const dev_null_fd = if (any_ignore)
|
|
os.openZ("/dev/null", os.O.RDWR, 0) catch |err| switch (err) {
|
|
error.PathAlreadyExists => unreachable,
|
|
error.NoSpaceLeft => unreachable,
|
|
error.FileTooBig => unreachable,
|
|
error.DeviceBusy => unreachable,
|
|
error.FileLocksNotSupported => unreachable,
|
|
error.BadPathName => unreachable, // Windows-only
|
|
error.InvalidHandle => unreachable, // WASI-only
|
|
error.WouldBlock => unreachable,
|
|
error.NetworkNotFound => unreachable, // Windows-only
|
|
else => |e| return e,
|
|
}
|
|
else
|
|
undefined;
|
|
defer {
|
|
if (any_ignore) os.close(dev_null_fd);
|
|
}
|
|
|
|
var arena_allocator = std.heap.ArenaAllocator.init(self.allocator);
|
|
defer arena_allocator.deinit();
|
|
const arena = arena_allocator.allocator();
|
|
|
|
// The POSIX standard does not allow malloc() between fork() and execve(),
|
|
// and `self.allocator` may be a libc allocator.
|
|
// I have personally observed the child process deadlocking when it tries
|
|
// to call malloc() due to a heap allocation between fork() and execve(),
|
|
// in musl v1.1.24.
|
|
// Additionally, we want to reduce the number of possible ways things
|
|
// can fail between fork() and execve().
|
|
// Therefore, we do all the allocation for the execve() before the fork().
|
|
// This means we must do the null-termination of argv and env vars here.
|
|
const argv_buf = try arena.allocSentinel(?[*:0]const u8, self.argv.len, null);
|
|
for (self.argv, 0..) |arg, i| argv_buf[i] = (try arena.dupeZ(u8, arg)).ptr;
|
|
|
|
const envp = m: {
|
|
if (self.env_map) |env_map| {
|
|
const envp_buf = try createNullDelimitedEnvMap(arena, env_map);
|
|
break :m envp_buf.ptr;
|
|
} else if (builtin.link_libc) {
|
|
break :m std.c.environ;
|
|
} else if (builtin.output_mode == .Exe) {
|
|
// Then we have Zig start code and this works.
|
|
// TODO type-safety for null-termination of `os.environ`.
|
|
break :m @as([*:null]const ?[*:0]const u8, @ptrCast(os.environ.ptr));
|
|
} else {
|
|
// TODO come up with a solution for this.
|
|
@compileError("missing std lib enhancement: ChildProcess implementation has no way to collect the environment variables to forward to the child process");
|
|
}
|
|
};
|
|
|
|
// This pipe is used to communicate errors between the time of fork
|
|
// and execve from the child process to the parent process.
|
|
const err_pipe = blk: {
|
|
if (builtin.os.tag == .linux) {
|
|
const fd = try os.eventfd(0, linux.EFD.CLOEXEC);
|
|
// There's no distinction between the readable and the writeable
|
|
// end with eventfd
|
|
break :blk [2]os.fd_t{ fd, fd };
|
|
} else {
|
|
break :blk try os.pipe2(os.O.CLOEXEC);
|
|
}
|
|
};
|
|
errdefer destroyPipe(err_pipe);
|
|
|
|
const pid_result = try os.fork();
|
|
if (pid_result == 0) {
|
|
// we are the child
|
|
setUpChildIo(self.stdin_behavior, stdin_pipe[0], os.STDIN_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err);
|
|
setUpChildIo(self.stdout_behavior, stdout_pipe[1], os.STDOUT_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err);
|
|
setUpChildIo(self.stderr_behavior, stderr_pipe[1], os.STDERR_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err);
|
|
|
|
if (self.stdin_behavior == .Pipe) {
|
|
os.close(stdin_pipe[0]);
|
|
os.close(stdin_pipe[1]);
|
|
}
|
|
if (self.stdout_behavior == .Pipe) {
|
|
os.close(stdout_pipe[0]);
|
|
os.close(stdout_pipe[1]);
|
|
}
|
|
if (self.stderr_behavior == .Pipe) {
|
|
os.close(stderr_pipe[0]);
|
|
os.close(stderr_pipe[1]);
|
|
}
|
|
|
|
if (self.cwd_dir) |cwd| {
|
|
os.fchdir(cwd.fd) catch |err| forkChildErrReport(err_pipe[1], err);
|
|
} else if (self.cwd) |cwd| {
|
|
os.chdir(cwd) catch |err| forkChildErrReport(err_pipe[1], err);
|
|
}
|
|
|
|
if (self.gid) |gid| {
|
|
os.setregid(gid, gid) catch |err| forkChildErrReport(err_pipe[1], err);
|
|
}
|
|
|
|
if (self.uid) |uid| {
|
|
os.setreuid(uid, uid) catch |err| forkChildErrReport(err_pipe[1], err);
|
|
}
|
|
|
|
const err = switch (self.expand_arg0) {
|
|
.expand => os.execvpeZ_expandArg0(.expand, argv_buf.ptr[0].?, argv_buf.ptr, envp),
|
|
.no_expand => os.execvpeZ_expandArg0(.no_expand, argv_buf.ptr[0].?, argv_buf.ptr, envp),
|
|
};
|
|
forkChildErrReport(err_pipe[1], err);
|
|
}
|
|
|
|
// we are the parent
|
|
const pid = @as(i32, @intCast(pid_result));
|
|
if (self.stdin_behavior == StdIo.Pipe) {
|
|
self.stdin = File{ .handle = stdin_pipe[1] };
|
|
} else {
|
|
self.stdin = null;
|
|
}
|
|
if (self.stdout_behavior == StdIo.Pipe) {
|
|
self.stdout = File{ .handle = stdout_pipe[0] };
|
|
} else {
|
|
self.stdout = null;
|
|
}
|
|
if (self.stderr_behavior == StdIo.Pipe) {
|
|
self.stderr = File{ .handle = stderr_pipe[0] };
|
|
} else {
|
|
self.stderr = null;
|
|
}
|
|
|
|
self.id = pid;
|
|
self.err_pipe = err_pipe;
|
|
self.term = null;
|
|
|
|
if (self.stdin_behavior == StdIo.Pipe) {
|
|
os.close(stdin_pipe[0]);
|
|
}
|
|
if (self.stdout_behavior == StdIo.Pipe) {
|
|
os.close(stdout_pipe[1]);
|
|
}
|
|
if (self.stderr_behavior == StdIo.Pipe) {
|
|
os.close(stderr_pipe[1]);
|
|
}
|
|
}
|
|
|
|
fn spawnWindows(self: *ChildProcess) SpawnError!void {
|
|
const saAttr = windows.SECURITY_ATTRIBUTES{
|
|
.nLength = @sizeOf(windows.SECURITY_ATTRIBUTES),
|
|
.bInheritHandle = windows.TRUE,
|
|
.lpSecurityDescriptor = null,
|
|
};
|
|
|
|
const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore);
|
|
|
|
const nul_handle = if (any_ignore)
|
|
// "\Device\Null" or "\??\NUL"
|
|
windows.OpenFile(&[_]u16{ '\\', 'D', 'e', 'v', 'i', 'c', 'e', '\\', 'N', 'u', 'l', 'l' }, .{
|
|
.access_mask = windows.GENERIC_READ | windows.SYNCHRONIZE,
|
|
.share_access = windows.FILE_SHARE_READ,
|
|
.creation = windows.OPEN_EXISTING,
|
|
.io_mode = .blocking,
|
|
}) catch |err| switch (err) {
|
|
error.PathAlreadyExists => unreachable, // not possible for "NUL"
|
|
error.PipeBusy => unreachable, // not possible for "NUL"
|
|
error.FileNotFound => unreachable, // not possible for "NUL"
|
|
error.AccessDenied => unreachable, // not possible for "NUL"
|
|
error.NameTooLong => unreachable, // not possible for "NUL"
|
|
error.WouldBlock => unreachable, // not possible for "NUL"
|
|
error.NetworkNotFound => unreachable, // not possible for "NUL"
|
|
else => |e| return e,
|
|
}
|
|
else
|
|
undefined;
|
|
defer {
|
|
if (any_ignore) os.close(nul_handle);
|
|
}
|
|
if (any_ignore) {
|
|
try windows.SetHandleInformation(nul_handle, windows.HANDLE_FLAG_INHERIT, 0);
|
|
}
|
|
|
|
var g_hChildStd_IN_Rd: ?windows.HANDLE = null;
|
|
var g_hChildStd_IN_Wr: ?windows.HANDLE = null;
|
|
switch (self.stdin_behavior) {
|
|
StdIo.Pipe => {
|
|
try windowsMakePipeIn(&g_hChildStd_IN_Rd, &g_hChildStd_IN_Wr, &saAttr);
|
|
},
|
|
StdIo.Ignore => {
|
|
g_hChildStd_IN_Rd = nul_handle;
|
|
},
|
|
StdIo.Inherit => {
|
|
g_hChildStd_IN_Rd = windows.GetStdHandle(windows.STD_INPUT_HANDLE) catch null;
|
|
},
|
|
StdIo.Close => {
|
|
g_hChildStd_IN_Rd = null;
|
|
},
|
|
}
|
|
errdefer if (self.stdin_behavior == StdIo.Pipe) {
|
|
windowsDestroyPipe(g_hChildStd_IN_Rd, g_hChildStd_IN_Wr);
|
|
};
|
|
|
|
var g_hChildStd_OUT_Rd: ?windows.HANDLE = null;
|
|
var g_hChildStd_OUT_Wr: ?windows.HANDLE = null;
|
|
switch (self.stdout_behavior) {
|
|
StdIo.Pipe => {
|
|
try windowsMakeAsyncPipe(&g_hChildStd_OUT_Rd, &g_hChildStd_OUT_Wr, &saAttr);
|
|
},
|
|
StdIo.Ignore => {
|
|
g_hChildStd_OUT_Wr = nul_handle;
|
|
},
|
|
StdIo.Inherit => {
|
|
g_hChildStd_OUT_Wr = windows.GetStdHandle(windows.STD_OUTPUT_HANDLE) catch null;
|
|
},
|
|
StdIo.Close => {
|
|
g_hChildStd_OUT_Wr = null;
|
|
},
|
|
}
|
|
errdefer if (self.stdin_behavior == StdIo.Pipe) {
|
|
windowsDestroyPipe(g_hChildStd_OUT_Rd, g_hChildStd_OUT_Wr);
|
|
};
|
|
|
|
var g_hChildStd_ERR_Rd: ?windows.HANDLE = null;
|
|
var g_hChildStd_ERR_Wr: ?windows.HANDLE = null;
|
|
switch (self.stderr_behavior) {
|
|
StdIo.Pipe => {
|
|
try windowsMakeAsyncPipe(&g_hChildStd_ERR_Rd, &g_hChildStd_ERR_Wr, &saAttr);
|
|
},
|
|
StdIo.Ignore => {
|
|
g_hChildStd_ERR_Wr = nul_handle;
|
|
},
|
|
StdIo.Inherit => {
|
|
g_hChildStd_ERR_Wr = windows.GetStdHandle(windows.STD_ERROR_HANDLE) catch null;
|
|
},
|
|
StdIo.Close => {
|
|
g_hChildStd_ERR_Wr = null;
|
|
},
|
|
}
|
|
errdefer if (self.stdin_behavior == StdIo.Pipe) {
|
|
windowsDestroyPipe(g_hChildStd_ERR_Rd, g_hChildStd_ERR_Wr);
|
|
};
|
|
|
|
const cmd_line = try windowsCreateCommandLine(self.allocator, self.argv);
|
|
defer self.allocator.free(cmd_line);
|
|
|
|
var siStartInfo = windows.STARTUPINFOW{
|
|
.cb = @sizeOf(windows.STARTUPINFOW),
|
|
.hStdError = g_hChildStd_ERR_Wr,
|
|
.hStdOutput = g_hChildStd_OUT_Wr,
|
|
.hStdInput = g_hChildStd_IN_Rd,
|
|
.dwFlags = windows.STARTF_USESTDHANDLES,
|
|
|
|
.lpReserved = null,
|
|
.lpDesktop = null,
|
|
.lpTitle = null,
|
|
.dwX = 0,
|
|
.dwY = 0,
|
|
.dwXSize = 0,
|
|
.dwYSize = 0,
|
|
.dwXCountChars = 0,
|
|
.dwYCountChars = 0,
|
|
.dwFillAttribute = 0,
|
|
.wShowWindow = 0,
|
|
.cbReserved2 = 0,
|
|
.lpReserved2 = null,
|
|
};
|
|
var piProcInfo: windows.PROCESS_INFORMATION = undefined;
|
|
|
|
const cwd_w = if (self.cwd) |cwd| try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd) else null;
|
|
defer if (cwd_w) |cwd| self.allocator.free(cwd);
|
|
const cwd_w_ptr = if (cwd_w) |cwd| cwd.ptr else null;
|
|
|
|
const maybe_envp_buf = if (self.env_map) |env_map| try createWindowsEnvBlock(self.allocator, env_map) else null;
|
|
defer if (maybe_envp_buf) |envp_buf| self.allocator.free(envp_buf);
|
|
const envp_ptr = if (maybe_envp_buf) |envp_buf| envp_buf.ptr else null;
|
|
|
|
const app_name_utf8 = self.argv[0];
|
|
const app_name_is_absolute = fs.path.isAbsolute(app_name_utf8);
|
|
|
|
// the cwd set in ChildProcess is in effect when choosing the executable path
|
|
// to match posix semantics
|
|
var cwd_path_w_needs_free = false;
|
|
const cwd_path_w = x: {
|
|
// If the app name is absolute, then we need to use its dirname as the cwd
|
|
if (app_name_is_absolute) {
|
|
cwd_path_w_needs_free = true;
|
|
const dir = fs.path.dirname(app_name_utf8).?;
|
|
break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, dir);
|
|
} else if (self.cwd) |cwd| {
|
|
cwd_path_w_needs_free = true;
|
|
break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd);
|
|
} else {
|
|
break :x &[_:0]u16{}; // empty for cwd
|
|
}
|
|
};
|
|
defer if (cwd_path_w_needs_free) self.allocator.free(cwd_path_w);
|
|
|
|
// If the app name has more than just a filename, then we need to separate that
|
|
// into the basename and dirname and use the dirname as an addition to the cwd
|
|
// path. This is because NtQueryDirectoryFile cannot accept FileName params with
|
|
// path separators.
|
|
const app_basename_utf8 = fs.path.basename(app_name_utf8);
|
|
// If the app name is absolute, then the cwd will already have the app's dirname in it,
|
|
// so only populate app_dirname if app name is a relative path with > 0 path separators.
|
|
const maybe_app_dirname_utf8 = if (!app_name_is_absolute) fs.path.dirname(app_name_utf8) else null;
|
|
const app_dirname_w: ?[:0]u16 = x: {
|
|
if (maybe_app_dirname_utf8) |app_dirname_utf8| {
|
|
break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, app_dirname_utf8);
|
|
}
|
|
break :x null;
|
|
};
|
|
defer if (app_dirname_w != null) self.allocator.free(app_dirname_w.?);
|
|
|
|
const app_name_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, app_basename_utf8);
|
|
defer self.allocator.free(app_name_w);
|
|
|
|
const cmd_line_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, cmd_line);
|
|
defer self.allocator.free(cmd_line_w);
|
|
|
|
exec: {
|
|
const PATH: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATH")) orelse &[_:0]u16{};
|
|
const PATHEXT: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATHEXT")) orelse &[_:0]u16{};
|
|
|
|
var app_buf = std.ArrayListUnmanaged(u16){};
|
|
defer app_buf.deinit(self.allocator);
|
|
|
|
try app_buf.appendSlice(self.allocator, app_name_w);
|
|
|
|
var dir_buf = std.ArrayListUnmanaged(u16){};
|
|
defer dir_buf.deinit(self.allocator);
|
|
|
|
if (cwd_path_w.len > 0) {
|
|
try dir_buf.appendSlice(self.allocator, cwd_path_w);
|
|
}
|
|
if (app_dirname_w) |app_dir| {
|
|
if (dir_buf.items.len > 0) try dir_buf.append(self.allocator, fs.path.sep);
|
|
try dir_buf.appendSlice(self.allocator, app_dir);
|
|
}
|
|
if (dir_buf.items.len > 0) {
|
|
// Need to normalize the path, openDirW can't handle things like double backslashes
|
|
const normalized_len = windows.normalizePath(u16, dir_buf.items) catch return error.BadPathName;
|
|
dir_buf.shrinkRetainingCapacity(normalized_len);
|
|
}
|
|
|
|
windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo) catch |no_path_err| {
|
|
var original_err = switch (no_path_err) {
|
|
error.FileNotFound, error.InvalidExe, error.AccessDenied => |e| e,
|
|
error.UnrecoverableInvalidExe => return error.InvalidExe,
|
|
else => |e| return e,
|
|
};
|
|
|
|
// If the app name had path separators, that disallows PATH searching,
|
|
// and there's no need to search the PATH if the app name is absolute.
|
|
// We still search the path if the cwd is absolute because of the
|
|
// "cwd set in ChildProcess is in effect when choosing the executable path
|
|
// to match posix semantics" behavior--we don't want to skip searching
|
|
// the PATH just because we were trying to set the cwd of the child process.
|
|
if (app_dirname_w != null or app_name_is_absolute) {
|
|
return original_err;
|
|
}
|
|
|
|
var it = mem.tokenizeScalar(u16, PATH, ';');
|
|
while (it.next()) |search_path| {
|
|
dir_buf.clearRetainingCapacity();
|
|
try dir_buf.appendSlice(self.allocator, search_path);
|
|
// Need to normalize the path, some PATH values can contain things like double
|
|
// backslashes which openDirW can't handle
|
|
const normalized_len = windows.normalizePath(u16, dir_buf.items) catch continue;
|
|
dir_buf.shrinkRetainingCapacity(normalized_len);
|
|
|
|
if (windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo)) {
|
|
break :exec;
|
|
} else |err| switch (err) {
|
|
error.FileNotFound, error.AccessDenied, error.InvalidExe => continue,
|
|
error.UnrecoverableInvalidExe => return error.InvalidExe,
|
|
else => |e| return e,
|
|
}
|
|
} else {
|
|
return original_err;
|
|
}
|
|
};
|
|
}
|
|
|
|
if (g_hChildStd_IN_Wr) |h| {
|
|
self.stdin = File{ .handle = h };
|
|
} else {
|
|
self.stdin = null;
|
|
}
|
|
if (g_hChildStd_OUT_Rd) |h| {
|
|
self.stdout = File{ .handle = h };
|
|
} else {
|
|
self.stdout = null;
|
|
}
|
|
if (g_hChildStd_ERR_Rd) |h| {
|
|
self.stderr = File{ .handle = h };
|
|
} else {
|
|
self.stderr = null;
|
|
}
|
|
|
|
self.id = piProcInfo.hProcess;
|
|
self.thread_handle = piProcInfo.hThread;
|
|
self.term = null;
|
|
|
|
if (self.stdin_behavior == StdIo.Pipe) {
|
|
os.close(g_hChildStd_IN_Rd.?);
|
|
}
|
|
if (self.stderr_behavior == StdIo.Pipe) {
|
|
os.close(g_hChildStd_ERR_Wr.?);
|
|
}
|
|
if (self.stdout_behavior == StdIo.Pipe) {
|
|
os.close(g_hChildStd_OUT_Wr.?);
|
|
}
|
|
}
|
|
|
|
fn setUpChildIo(stdio: StdIo, pipe_fd: i32, std_fileno: i32, dev_null_fd: i32) !void {
|
|
switch (stdio) {
|
|
.Pipe => try os.dup2(pipe_fd, std_fileno),
|
|
.Close => os.close(std_fileno),
|
|
.Inherit => {},
|
|
.Ignore => try os.dup2(dev_null_fd, std_fileno),
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Expects `app_buf` to contain exactly the app name, and `dir_buf` to contain exactly the dir path.
|
|
/// After return, `app_buf` will always contain exactly the app name and `dir_buf` will always contain exactly the dir path.
|
|
/// Note: `app_buf` should not contain any leading path separators.
|
|
/// Note: If the dir is the cwd, dir_buf should be empty (len = 0).
|
|
fn windowsCreateProcessPathExt(
|
|
allocator: mem.Allocator,
|
|
dir_buf: *std.ArrayListUnmanaged(u16),
|
|
app_buf: *std.ArrayListUnmanaged(u16),
|
|
pathext: [:0]const u16,
|
|
cmd_line: [*:0]u16,
|
|
envp_ptr: ?[*]u16,
|
|
cwd_ptr: ?[*:0]u16,
|
|
lpStartupInfo: *windows.STARTUPINFOW,
|
|
lpProcessInformation: *windows.PROCESS_INFORMATION,
|
|
) !void {
|
|
const app_name_len = app_buf.items.len;
|
|
const dir_path_len = dir_buf.items.len;
|
|
|
|
if (app_name_len == 0) return error.FileNotFound;
|
|
|
|
defer app_buf.shrinkRetainingCapacity(app_name_len);
|
|
defer dir_buf.shrinkRetainingCapacity(dir_path_len);
|
|
|
|
// The name of the game here is to avoid CreateProcessW calls at all costs,
|
|
// and only ever try calling it when we have a real candidate for execution.
|
|
// Secondarily, we want to minimize the number of syscalls used when checking
|
|
// for each PATHEXT-appended version of the app name.
|
|
//
|
|
// An overview of the technique used:
|
|
// - Open the search directory for iteration (either cwd or a path from PATH)
|
|
// - Use NtQueryDirectoryFile with a wildcard filename of `<app name>*` to
|
|
// check if anything that could possibly match either the unappended version
|
|
// of the app name or any of the versions with a PATHEXT value appended exists.
|
|
// - If the wildcard NtQueryDirectoryFile call found nothing, we can exit early
|
|
// without needing to use PATHEXT at all.
|
|
//
|
|
// This allows us to use a <open dir, NtQueryDirectoryFile, close dir> sequence
|
|
// for any directory that doesn't contain any possible matches, instead of having
|
|
// to use a separate look up for each individual filename combination (unappended +
|
|
// each PATHEXT appended). For directories where the wildcard *does* match something,
|
|
// we iterate the matches and take note of any that are either the unappended version,
|
|
// or a version with a supported PATHEXT appended. We then try calling CreateProcessW
|
|
// with the found versions in the appropriate order.
|
|
|
|
var dir = dir: {
|
|
// needs to be null-terminated
|
|
try dir_buf.append(allocator, 0);
|
|
defer dir_buf.shrinkRetainingCapacity(dir_path_len);
|
|
const dir_path_z = dir_buf.items[0 .. dir_buf.items.len - 1 :0];
|
|
const prefixed_path = try windows.wToPrefixedFileW(null, dir_path_z);
|
|
break :dir fs.cwd().openDirW(prefixed_path.span().ptr, .{}, true) catch return error.FileNotFound;
|
|
};
|
|
defer dir.close();
|
|
|
|
// Add wildcard and null-terminator
|
|
try app_buf.append(allocator, '*');
|
|
try app_buf.append(allocator, 0);
|
|
const app_name_wildcard = app_buf.items[0 .. app_buf.items.len - 1 :0];
|
|
|
|
// This 2048 is arbitrary, we just want it to be large enough to get multiple FILE_DIRECTORY_INFORMATION entries
|
|
// returned per NtQueryDirectoryFile call.
|
|
var file_information_buf: [2048]u8 align(@alignOf(os.windows.FILE_DIRECTORY_INFORMATION)) = undefined;
|
|
const file_info_maximum_single_entry_size = @sizeOf(windows.FILE_DIRECTORY_INFORMATION) + (windows.NAME_MAX * 2);
|
|
if (file_information_buf.len < file_info_maximum_single_entry_size) {
|
|
@compileError("file_information_buf must be large enough to contain at least one maximum size FILE_DIRECTORY_INFORMATION entry");
|
|
}
|
|
var io_status: windows.IO_STATUS_BLOCK = undefined;
|
|
|
|
const num_supported_pathext = @typeInfo(CreateProcessSupportedExtension).Enum.fields.len;
|
|
var pathext_seen = [_]bool{false} ** num_supported_pathext;
|
|
var any_pathext_seen = false;
|
|
var unappended_exists = false;
|
|
|
|
// Fully iterate the wildcard matches via NtQueryDirectoryFile and take note of all versions
|
|
// of the app_name we should try to spawn.
|
|
// Note: This is necessary because the order of the files returned is filesystem-dependent:
|
|
// On NTFS, `blah.exe*` will always return `blah.exe` first if it exists.
|
|
// On FAT32, it's possible for something like `blah.exe.obj` to be returned first.
|
|
while (true) {
|
|
const app_name_len_bytes = math.cast(u16, app_name_wildcard.len * 2) orelse return error.NameTooLong;
|
|
var app_name_unicode_string = windows.UNICODE_STRING{
|
|
.Length = app_name_len_bytes,
|
|
.MaximumLength = app_name_len_bytes,
|
|
.Buffer = @constCast(app_name_wildcard.ptr),
|
|
};
|
|
const rc = windows.ntdll.NtQueryDirectoryFile(
|
|
dir.fd,
|
|
null,
|
|
null,
|
|
null,
|
|
&io_status,
|
|
&file_information_buf,
|
|
file_information_buf.len,
|
|
.FileDirectoryInformation,
|
|
windows.FALSE, // single result
|
|
&app_name_unicode_string,
|
|
windows.FALSE, // restart iteration
|
|
);
|
|
|
|
// If we get nothing with the wildcard, then we can just bail out
|
|
// as we know appending PATHEXT will not yield anything.
|
|
switch (rc) {
|
|
.SUCCESS => {},
|
|
.NO_SUCH_FILE => return error.FileNotFound,
|
|
.NO_MORE_FILES => break,
|
|
.ACCESS_DENIED => return error.AccessDenied,
|
|
else => return windows.unexpectedStatus(rc),
|
|
}
|
|
|
|
// According to the docs, this can only happen if there is not enough room in the
|
|
// buffer to write at least one complete FILE_DIRECTORY_INFORMATION entry.
|
|
// Therefore, this condition should not be possible to hit with the buffer size we use.
|
|
std.debug.assert(io_status.Information != 0);
|
|
|
|
var it = windows.FileInformationIterator(windows.FILE_DIRECTORY_INFORMATION){ .buf = &file_information_buf };
|
|
while (it.next()) |info| {
|
|
// Skip directories
|
|
if (info.FileAttributes & windows.FILE_ATTRIBUTE_DIRECTORY != 0) continue;
|
|
const filename = @as([*]u16, @ptrCast(&info.FileName))[0 .. info.FileNameLength / 2];
|
|
// Because all results start with the app_name since we're using the wildcard `app_name*`,
|
|
// if the length is equal to app_name then this is an exact match
|
|
if (filename.len == app_name_len) {
|
|
// Note: We can't break early here because it's possible that the unappended version
|
|
// fails to spawn, in which case we still want to try the PATHEXT appended versions.
|
|
unappended_exists = true;
|
|
} else if (windowsCreateProcessSupportsExtension(filename[app_name_len..])) |pathext_ext| {
|
|
pathext_seen[@intFromEnum(pathext_ext)] = true;
|
|
any_pathext_seen = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
const unappended_err = unappended: {
|
|
if (unappended_exists) {
|
|
if (dir_path_len != 0) switch (dir_buf.items[dir_buf.items.len - 1]) {
|
|
'/', '\\' => {},
|
|
else => try dir_buf.append(allocator, fs.path.sep),
|
|
};
|
|
try dir_buf.appendSlice(allocator, app_buf.items[0..app_name_len]);
|
|
try dir_buf.append(allocator, 0);
|
|
const full_app_name = dir_buf.items[0 .. dir_buf.items.len - 1 :0];
|
|
|
|
if (windowsCreateProcess(full_app_name.ptr, cmd_line, envp_ptr, cwd_ptr, lpStartupInfo, lpProcessInformation)) |_| {
|
|
return;
|
|
} else |err| switch (err) {
|
|
error.FileNotFound,
|
|
error.AccessDenied,
|
|
=> break :unappended err,
|
|
error.InvalidExe => {
|
|
// On InvalidExe, if the extension of the app name is .exe then
|
|
// it's treated as an unrecoverable error. Otherwise, it'll be
|
|
// skipped as normal.
|
|
const app_name = app_buf.items[0..app_name_len];
|
|
const ext_start = std.mem.lastIndexOfScalar(u16, app_name, '.') orelse break :unappended err;
|
|
const ext = app_name[ext_start..];
|
|
if (windows.eqlIgnoreCaseWTF16(ext, unicode.utf8ToUtf16LeStringLiteral(".EXE"))) {
|
|
return error.UnrecoverableInvalidExe;
|
|
}
|
|
break :unappended err;
|
|
},
|
|
else => return err,
|
|
}
|
|
}
|
|
break :unappended error.FileNotFound;
|
|
};
|
|
|
|
if (!any_pathext_seen) return unappended_err;
|
|
|
|
// Now try any PATHEXT appended versions that we've seen
|
|
var ext_it = mem.tokenizeScalar(u16, pathext, ';');
|
|
while (ext_it.next()) |ext| {
|
|
const ext_enum = windowsCreateProcessSupportsExtension(ext) orelse continue;
|
|
if (!pathext_seen[@intFromEnum(ext_enum)]) continue;
|
|
|
|
dir_buf.shrinkRetainingCapacity(dir_path_len);
|
|
if (dir_path_len != 0) switch (dir_buf.items[dir_buf.items.len - 1]) {
|
|
'/', '\\' => {},
|
|
else => try dir_buf.append(allocator, fs.path.sep),
|
|
};
|
|
try dir_buf.appendSlice(allocator, app_buf.items[0..app_name_len]);
|
|
try dir_buf.appendSlice(allocator, ext);
|
|
try dir_buf.append(allocator, 0);
|
|
const full_app_name = dir_buf.items[0 .. dir_buf.items.len - 1 :0];
|
|
|
|
if (windowsCreateProcess(full_app_name.ptr, cmd_line, envp_ptr, cwd_ptr, lpStartupInfo, lpProcessInformation)) |_| {
|
|
return;
|
|
} else |err| switch (err) {
|
|
error.FileNotFound => continue,
|
|
error.AccessDenied => continue,
|
|
error.InvalidExe => {
|
|
// On InvalidExe, if the extension of the app name is .exe then
|
|
// it's treated as an unrecoverable error. Otherwise, it'll be
|
|
// skipped as normal.
|
|
if (windows.eqlIgnoreCaseWTF16(ext, unicode.utf8ToUtf16LeStringLiteral(".EXE"))) {
|
|
return error.UnrecoverableInvalidExe;
|
|
}
|
|
continue;
|
|
},
|
|
else => return err,
|
|
}
|
|
}
|
|
|
|
return unappended_err;
|
|
}
|
|
|
|
fn windowsCreateProcess(app_name: [*:0]u16, cmd_line: [*:0]u16, envp_ptr: ?[*]u16, cwd_ptr: ?[*:0]u16, lpStartupInfo: *windows.STARTUPINFOW, lpProcessInformation: *windows.PROCESS_INFORMATION) !void {
|
|
// TODO the docs for environment pointer say:
|
|
// > A pointer to the environment block for the new process. If this parameter
|
|
// > is NULL, the new process uses the environment of the calling process.
|
|
// > ...
|
|
// > An environment block can contain either Unicode or ANSI characters. If
|
|
// > the environment block pointed to by lpEnvironment contains Unicode
|
|
// > characters, be sure that dwCreationFlags includes CREATE_UNICODE_ENVIRONMENT.
|
|
// > If this parameter is NULL and the environment block of the parent process
|
|
// > contains Unicode characters, you must also ensure that dwCreationFlags
|
|
// > includes CREATE_UNICODE_ENVIRONMENT.
|
|
// This seems to imply that we have to somehow know whether our process parent passed
|
|
// CREATE_UNICODE_ENVIRONMENT if we want to pass NULL for the environment parameter.
|
|
// Since we do not know this information that would imply that we must not pass NULL
|
|
// for the parameter.
|
|
// However this would imply that programs compiled with -DUNICODE could not pass
|
|
// environment variables to programs that were not, which seems unlikely.
|
|
// More investigation is needed.
|
|
return windows.CreateProcessW(
|
|
app_name,
|
|
cmd_line,
|
|
null,
|
|
null,
|
|
windows.TRUE,
|
|
windows.CREATE_UNICODE_ENVIRONMENT,
|
|
@as(?*anyopaque, @ptrCast(envp_ptr)),
|
|
cwd_ptr,
|
|
lpStartupInfo,
|
|
lpProcessInformation,
|
|
);
|
|
}
|
|
|
|
// Should be kept in sync with `windowsCreateProcessSupportsExtension`
|
|
const CreateProcessSupportedExtension = enum {
|
|
bat,
|
|
cmd,
|
|
com,
|
|
exe,
|
|
};
|
|
|
|
/// Case-insensitive UTF-16 lookup
|
|
fn windowsCreateProcessSupportsExtension(ext: []const u16) ?CreateProcessSupportedExtension {
|
|
if (ext.len != 4) return null;
|
|
const State = enum {
|
|
start,
|
|
dot,
|
|
b,
|
|
ba,
|
|
c,
|
|
cm,
|
|
co,
|
|
e,
|
|
ex,
|
|
};
|
|
var state: State = .start;
|
|
for (ext) |c| switch (state) {
|
|
.start => switch (c) {
|
|
'.' => state = .dot,
|
|
else => return null,
|
|
},
|
|
.dot => switch (c) {
|
|
'b', 'B' => state = .b,
|
|
'c', 'C' => state = .c,
|
|
'e', 'E' => state = .e,
|
|
else => return null,
|
|
},
|
|
.b => switch (c) {
|
|
'a', 'A' => state = .ba,
|
|
else => return null,
|
|
},
|
|
.c => switch (c) {
|
|
'm', 'M' => state = .cm,
|
|
'o', 'O' => state = .co,
|
|
else => return null,
|
|
},
|
|
.e => switch (c) {
|
|
'x', 'X' => state = .ex,
|
|
else => return null,
|
|
},
|
|
.ba => switch (c) {
|
|
't', 'T' => return .bat,
|
|
else => return null,
|
|
},
|
|
.cm => switch (c) {
|
|
'd', 'D' => return .cmd,
|
|
else => return null,
|
|
},
|
|
.co => switch (c) {
|
|
'm', 'M' => return .com,
|
|
else => return null,
|
|
},
|
|
.ex => switch (c) {
|
|
'e', 'E' => return .exe,
|
|
else => return null,
|
|
},
|
|
};
|
|
return null;
|
|
}
|
|
|
|
test "windowsCreateProcessSupportsExtension" {
|
|
try std.testing.expectEqual(CreateProcessSupportedExtension.exe, windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e' }).?);
|
|
try std.testing.expect(windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e', 'c' }) == null);
|
|
}
|
|
|
|
/// Caller must dealloc.
|
|
fn windowsCreateCommandLine(allocator: mem.Allocator, argv: []const []const u8) ![:0]u8 {
|
|
var buf = std.ArrayList(u8).init(allocator);
|
|
defer buf.deinit();
|
|
|
|
for (argv, 0..) |arg, arg_i| {
|
|
if (arg_i != 0) try buf.append(' ');
|
|
if (mem.indexOfAny(u8, arg, " \t\n\"") == null) {
|
|
try buf.appendSlice(arg);
|
|
continue;
|
|
}
|
|
try buf.append('"');
|
|
var backslash_count: usize = 0;
|
|
for (arg) |byte| {
|
|
switch (byte) {
|
|
'\\' => backslash_count += 1,
|
|
'"' => {
|
|
try buf.appendNTimes('\\', backslash_count * 2 + 1);
|
|
try buf.append('"');
|
|
backslash_count = 0;
|
|
},
|
|
else => {
|
|
try buf.appendNTimes('\\', backslash_count);
|
|
try buf.append(byte);
|
|
backslash_count = 0;
|
|
},
|
|
}
|
|
}
|
|
try buf.appendNTimes('\\', backslash_count * 2);
|
|
try buf.append('"');
|
|
}
|
|
|
|
return buf.toOwnedSliceSentinel(0);
|
|
}
|
|
|
|
fn windowsDestroyPipe(rd: ?windows.HANDLE, wr: ?windows.HANDLE) void {
|
|
if (rd) |h| os.close(h);
|
|
if (wr) |h| os.close(h);
|
|
}
|
|
|
|
fn windowsMakePipeIn(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void {
|
|
var rd_h: windows.HANDLE = undefined;
|
|
var wr_h: windows.HANDLE = undefined;
|
|
try windows.CreatePipe(&rd_h, &wr_h, sattr);
|
|
errdefer windowsDestroyPipe(rd_h, wr_h);
|
|
try windows.SetHandleInformation(wr_h, windows.HANDLE_FLAG_INHERIT, 0);
|
|
rd.* = rd_h;
|
|
wr.* = wr_h;
|
|
}
|
|
|
|
var pipe_name_counter = std.atomic.Atomic(u32).init(1);
|
|
|
|
fn windowsMakeAsyncPipe(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void {
|
|
var tmp_bufw: [128]u16 = undefined;
|
|
|
|
// Anonymous pipes are built upon Named pipes.
|
|
// https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe
|
|
// Asynchronous (overlapped) read and write operations are not supported by anonymous pipes.
|
|
// https://docs.microsoft.com/en-us/windows/win32/ipc/anonymous-pipe-operations
|
|
const pipe_path = blk: {
|
|
var tmp_buf: [128]u8 = undefined;
|
|
// Forge a random path for the pipe.
|
|
const pipe_path = std.fmt.bufPrintZ(
|
|
&tmp_buf,
|
|
"\\\\.\\pipe\\zig-childprocess-{d}-{d}",
|
|
.{ windows.kernel32.GetCurrentProcessId(), pipe_name_counter.fetchAdd(1, .Monotonic) },
|
|
) catch unreachable;
|
|
const len = std.unicode.utf8ToUtf16Le(&tmp_bufw, pipe_path) catch unreachable;
|
|
tmp_bufw[len] = 0;
|
|
break :blk tmp_bufw[0..len :0];
|
|
};
|
|
|
|
// Create the read handle that can be used with overlapped IO ops.
|
|
const read_handle = windows.kernel32.CreateNamedPipeW(
|
|
pipe_path.ptr,
|
|
windows.PIPE_ACCESS_INBOUND | windows.FILE_FLAG_OVERLAPPED,
|
|
windows.PIPE_TYPE_BYTE,
|
|
1,
|
|
4096,
|
|
4096,
|
|
0,
|
|
sattr,
|
|
);
|
|
if (read_handle == windows.INVALID_HANDLE_VALUE) {
|
|
switch (windows.kernel32.GetLastError()) {
|
|
else => |err| return windows.unexpectedError(err),
|
|
}
|
|
}
|
|
errdefer os.close(read_handle);
|
|
|
|
var sattr_copy = sattr.*;
|
|
const write_handle = windows.kernel32.CreateFileW(
|
|
pipe_path.ptr,
|
|
windows.GENERIC_WRITE,
|
|
0,
|
|
&sattr_copy,
|
|
windows.OPEN_EXISTING,
|
|
windows.FILE_ATTRIBUTE_NORMAL,
|
|
null,
|
|
);
|
|
if (write_handle == windows.INVALID_HANDLE_VALUE) {
|
|
switch (windows.kernel32.GetLastError()) {
|
|
else => |err| return windows.unexpectedError(err),
|
|
}
|
|
}
|
|
errdefer os.close(write_handle);
|
|
|
|
try windows.SetHandleInformation(read_handle, windows.HANDLE_FLAG_INHERIT, 0);
|
|
|
|
rd.* = read_handle;
|
|
wr.* = write_handle;
|
|
}
|
|
|
|
fn destroyPipe(pipe: [2]os.fd_t) void {
|
|
os.close(pipe[0]);
|
|
if (pipe[0] != pipe[1]) os.close(pipe[1]);
|
|
}
|
|
|
|
// Child of fork calls this to report an error to the fork parent.
|
|
// Then the child exits.
|
|
fn forkChildErrReport(fd: i32, err: ChildProcess.SpawnError) noreturn {
|
|
writeIntFd(fd, @as(ErrInt, @intFromError(err))) catch {};
|
|
// If we're linking libc, some naughty applications may have registered atexit handlers
|
|
// which we really do not want to run in the fork child. I caught LLVM doing this and
|
|
// it caused a deadlock instead of doing an exit syscall. In the words of Avril Lavigne,
|
|
// "Why'd you have to go and make things so complicated?"
|
|
if (builtin.link_libc) {
|
|
// The _exit(2) function does nothing but make the exit syscall, unlike exit(3)
|
|
std.c._exit(1);
|
|
}
|
|
os.exit(1);
|
|
}
|
|
|
|
const ErrInt = std.meta.Int(.unsigned, @sizeOf(anyerror) * 8);
|
|
|
|
fn writeIntFd(fd: i32, value: ErrInt) !void {
|
|
const file = File{
|
|
.handle = fd,
|
|
.capable_io_mode = .blocking,
|
|
.intended_io_mode = .blocking,
|
|
};
|
|
file.writer().writeIntNative(u64, @as(u64, @intCast(value))) catch return error.SystemResources;
|
|
}
|
|
|
|
fn readIntFd(fd: i32) !ErrInt {
|
|
const file = File{
|
|
.handle = fd,
|
|
.capable_io_mode = .blocking,
|
|
.intended_io_mode = .blocking,
|
|
};
|
|
return @as(ErrInt, @intCast(file.reader().readIntNative(u64) catch return error.SystemResources));
|
|
}
|
|
|
|
/// Caller must free result.
|
|
pub fn createWindowsEnvBlock(allocator: mem.Allocator, env_map: *const EnvMap) ![]u16 {
|
|
// count bytes needed
|
|
const max_chars_needed = x: {
|
|
var max_chars_needed: usize = 4; // 4 for the final 4 null bytes
|
|
var it = env_map.iterator();
|
|
while (it.next()) |pair| {
|
|
// +1 for '='
|
|
// +1 for null byte
|
|
max_chars_needed += pair.key_ptr.len + pair.value_ptr.len + 2;
|
|
}
|
|
break :x max_chars_needed;
|
|
};
|
|
const result = try allocator.alloc(u16, max_chars_needed);
|
|
errdefer allocator.free(result);
|
|
|
|
var it = env_map.iterator();
|
|
var i: usize = 0;
|
|
while (it.next()) |pair| {
|
|
i += try unicode.utf8ToUtf16Le(result[i..], pair.key_ptr.*);
|
|
result[i] = '=';
|
|
i += 1;
|
|
i += try unicode.utf8ToUtf16Le(result[i..], pair.value_ptr.*);
|
|
result[i] = 0;
|
|
i += 1;
|
|
}
|
|
result[i] = 0;
|
|
i += 1;
|
|
result[i] = 0;
|
|
i += 1;
|
|
result[i] = 0;
|
|
i += 1;
|
|
result[i] = 0;
|
|
i += 1;
|
|
return try allocator.realloc(result, i);
|
|
}
|
|
|
|
pub fn createNullDelimitedEnvMap(arena: mem.Allocator, env_map: *const EnvMap) ![:null]?[*:0]u8 {
|
|
const envp_count = env_map.count();
|
|
const envp_buf = try arena.allocSentinel(?[*:0]u8, envp_count, null);
|
|
{
|
|
var it = env_map.iterator();
|
|
var i: usize = 0;
|
|
while (it.next()) |pair| : (i += 1) {
|
|
const env_buf = try arena.allocSentinel(u8, pair.key_ptr.len + pair.value_ptr.len + 1, 0);
|
|
@memcpy(env_buf[0..pair.key_ptr.len], pair.key_ptr.*);
|
|
env_buf[pair.key_ptr.len] = '=';
|
|
@memcpy(env_buf[pair.key_ptr.len + 1 ..][0..pair.value_ptr.len], pair.value_ptr.*);
|
|
envp_buf[i] = env_buf.ptr;
|
|
}
|
|
assert(i == envp_count);
|
|
}
|
|
return envp_buf;
|
|
}
|
|
|
|
test "createNullDelimitedEnvMap" {
|
|
const testing = std.testing;
|
|
const allocator = testing.allocator;
|
|
var envmap = EnvMap.init(allocator);
|
|
defer envmap.deinit();
|
|
|
|
try envmap.put("HOME", "/home/ifreund");
|
|
try envmap.put("WAYLAND_DISPLAY", "wayland-1");
|
|
try envmap.put("DISPLAY", ":1");
|
|
try envmap.put("DEBUGINFOD_URLS", " ");
|
|
try envmap.put("XCURSOR_SIZE", "24");
|
|
|
|
var arena = std.heap.ArenaAllocator.init(allocator);
|
|
defer arena.deinit();
|
|
const environ = try createNullDelimitedEnvMap(arena.allocator(), &envmap);
|
|
|
|
try testing.expectEqual(@as(usize, 5), environ.len);
|
|
|
|
inline for (.{
|
|
"HOME=/home/ifreund",
|
|
"WAYLAND_DISPLAY=wayland-1",
|
|
"DISPLAY=:1",
|
|
"DEBUGINFOD_URLS= ",
|
|
"XCURSOR_SIZE=24",
|
|
}) |target| {
|
|
for (environ) |variable| {
|
|
if (mem.eql(u8, mem.span(variable orelse continue), target)) break;
|
|
} else {
|
|
try testing.expect(false); // Environment variable not found
|
|
}
|
|
}
|
|
}
|