zig/lib/std/event/loop.zig
Frank Denis 6c2e0c2046 Year++
2020-12-31 15:45:24 -08:00

1715 lines
64 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("../std.zig");
const builtin = @import("builtin");
const root = @import("root");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const os = std.os;
const windows = os.windows;
const maxInt = std.math.maxInt;
const Thread = std.Thread;
const is_windows = std.Target.current.os.tag == .windows;
pub const Loop = struct {
next_tick_queue: std.atomic.Queue(anyframe),
os_data: OsData,
final_resume_node: ResumeNode,
pending_event_count: usize,
extra_threads: []*Thread,
/// TODO change this to a pool of configurable number of threads
/// and rename it to be not file-system-specific. it will become
/// a thread pool for turning non-CPU-bound blocking things into
/// async things. A fallback for any missing OS-specific API.
fs_thread: *Thread,
fs_queue: std.atomic.Queue(Request),
fs_end_request: Request.Node,
fs_thread_wakeup: std.ResetEvent,
/// For resources that have the same lifetime as the `Loop`.
/// This is only used by `Loop` for the thread pool and associated resources.
arena: std.heap.ArenaAllocator,
/// State which manages frames that are sleeping on timers
delay_queue: DelayQueue,
/// Pre-allocated eventfds. All permanently active.
/// This is how `Loop` sends promises to be resumed on other threads.
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
pub const NextTickNode = std.atomic.Queue(anyframe).Node;
pub const ResumeNode = struct {
id: Id,
handle: anyframe,
overlapped: Overlapped,
pub const overlapped_init = switch (builtin.os.tag) {
.windows => windows.OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.Offset = 0,
.OffsetHigh = 0,
.hEvent = null,
},
else => {},
};
pub const Overlapped = @TypeOf(overlapped_init);
pub const Id = enum {
Basic,
Stop,
EventFd,
};
pub const EventFd = switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventFd,
.linux => struct {
base: ResumeNode,
epoll_op: u32,
eventfd: i32,
},
.windows => struct {
base: ResumeNode,
completion_key: usize,
},
else => struct {},
};
const KEventFd = struct {
base: ResumeNode,
kevent: os.Kevent,
};
pub const Basic = switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventBasic,
.linux => struct {
base: ResumeNode,
},
.windows => struct {
base: ResumeNode,
},
else => @compileError("unsupported OS"),
};
const KEventBasic = struct {
base: ResumeNode,
kev: os.Kevent,
};
};
var global_instance_state: Loop = undefined;
const default_instance: ?*Loop = switch (std.io.mode) {
.blocking => null,
.evented => &global_instance_state,
};
pub const instance: ?*Loop = if (@hasDecl(root, "event_loop")) root.event_loop else default_instance;
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn init(self: *Loop) !void {
if (builtin.single_threaded or
(@hasDecl(root, "event_loop_mode") and root.event_loop_mode == .single_threaded))
{
return self.initSingleThreaded();
} else {
return self.initMultiThreaded();
}
}
/// After initialization, call run().
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn initSingleThreaded(self: *Loop) !void {
return self.initThreadPool(1);
}
/// After initialization, call run().
/// This is the same as `initThreadPool` using `Thread.cpuCount` to determine the thread
/// pool size.
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn initMultiThreaded(self: *Loop) !void {
if (builtin.single_threaded)
@compileError("initMultiThreaded unavailable when building in single-threaded mode");
const core_count = try Thread.cpuCount();
return self.initThreadPool(core_count);
}
/// Thread count is the total thread count. The thread pool size will be
/// max(thread_count - 1, 0)
pub fn initThreadPool(self: *Loop, thread_count: usize) !void {
self.* = Loop{
.arena = std.heap.ArenaAllocator.init(std.heap.page_allocator),
.pending_event_count = 1,
.os_data = undefined,
.next_tick_queue = std.atomic.Queue(anyframe).init(),
.extra_threads = undefined,
.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(),
.eventfd_resume_nodes = undefined,
.final_resume_node = ResumeNode{
.id = ResumeNode.Id.Stop,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
.fs_end_request = .{ .data = .{ .msg = .end, .finish = .NoAction } },
.fs_queue = std.atomic.Queue(Request).init(),
.fs_thread = undefined,
.fs_thread_wakeup = undefined,
.delay_queue = undefined,
};
try self.fs_thread_wakeup.init();
errdefer self.fs_thread_wakeup.deinit();
errdefer self.arena.deinit();
// We need at least one of these in case the fs thread wants to use onNextTick
const extra_thread_count = thread_count - 1;
const resume_node_count = std.math.max(extra_thread_count, 1);
self.eventfd_resume_nodes = try self.arena.allocator.alloc(
std.atomic.Stack(ResumeNode.EventFd).Node,
resume_node_count,
);
self.extra_threads = try self.arena.allocator.alloc(*Thread, extra_thread_count);
try self.initOsData(extra_thread_count);
errdefer self.deinitOsData();
if (!builtin.single_threaded) {
self.fs_thread = try Thread.spawn(self, posixFsRun);
}
errdefer if (!builtin.single_threaded) {
self.posixFsRequest(&self.fs_end_request);
self.fs_thread.wait();
};
if (!std.builtin.single_threaded)
try self.delay_queue.init();
}
pub fn deinit(self: *Loop) void {
self.deinitOsData();
self.fs_thread_wakeup.deinit();
self.arena.deinit();
self.* = undefined;
}
const InitOsDataError = os.EpollCreateError || mem.Allocator.Error || os.EventFdError ||
Thread.SpawnError || os.EpollCtlError || os.KEventError ||
windows.CreateIoCompletionPortError;
const wakeup_bytes = [_]u8{0x1} ** 8;
fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void {
nosuspend switch (builtin.os.tag) {
.linux => {
errdefer {
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
}
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .EventFd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
.eventfd = try os.eventfd(1, os.EFD_CLOEXEC | os.EFD_NONBLOCK),
.epoll_op = os.EPOLL_CTL_ADD,
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
self.os_data.epollfd = try os.epoll_create1(os.EPOLL_CLOEXEC);
errdefer os.close(self.os_data.epollfd);
self.os_data.final_eventfd = try os.eventfd(0, os.EFD_CLOEXEC | os.EFD_NONBLOCK);
errdefer os.close(self.os_data.final_eventfd);
self.os_data.final_eventfd_event = os.epoll_event{
.events = os.EPOLLIN,
.data = os.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) },
};
try os.epoll_ctl(
self.os_data.epollfd,
os.EPOLL_CTL_ADD,
self.os_data.final_eventfd,
&self.os_data.final_eventfd_event,
);
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
var extra_thread_index: usize = 0;
errdefer {
// writing 8 bytes to an eventfd cannot fail
const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable;
assert(amt == wakeup_bytes.len);
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun);
}
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.os_data.kqfd = try os.kqueue();
errdefer os.close(self.os_data.kqfd);
const empty_kevs = &[0]os.Kevent{};
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.kevent = os.Kevent{
.ident = i,
.filter = os.EVFILT_USER,
.flags = os.EV_CLEAR | os.EV_ADD | os.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.data.kevent);
_ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null);
eventfd_node.data.kevent.flags = os.EV_CLEAR | os.EV_ENABLE;
eventfd_node.data.kevent.fflags = os.NOTE_TRIGGER;
}
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = os.Kevent{
.ident = extra_thread_count,
.filter = os.EVFILT_USER,
.flags = os.EV_ADD | os.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&self.final_resume_node),
};
const final_kev_arr = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
_ = try os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null);
self.os_data.final_kevent.flags = os.EV_ENABLE;
self.os_data.final_kevent.fflags = os.NOTE_TRIGGER;
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
var extra_thread_index: usize = 0;
errdefer {
_ = os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun);
}
},
.windows => {
self.os_data.io_port = try windows.CreateIoCompletionPort(
windows.INVALID_HANDLE_VALUE,
null,
undefined,
maxInt(windows.DWORD),
);
errdefer windows.CloseHandle(self.os_data.io_port);
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.completion_key = @ptrToInt(&eventfd_node.data.base),
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
var extra_thread_index: usize = 0;
errdefer {
var i: usize = 0;
while (i < extra_thread_index) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun);
}
},
else => {},
};
}
fn deinitOsData(self: *Loop) void {
nosuspend switch (builtin.os.tag) {
.linux => {
os.close(self.os_data.final_eventfd);
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
os.close(self.os_data.epollfd);
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
os.close(self.os_data.kqfd);
},
.windows => {
windows.CloseHandle(self.os_data.io_port);
},
else => {},
};
}
/// resume_node must live longer than the anyframe that it holds a reference to.
/// flags must contain EPOLLET
pub fn linuxAddFd(self: *Loop, fd: i32, resume_node: *ResumeNode, flags: u32) !void {
assert(flags & os.EPOLLET == os.EPOLLET);
self.beginOneEvent();
errdefer self.finishOneEvent();
try self.linuxModFd(
fd,
os.EPOLL_CTL_ADD,
flags,
resume_node,
);
}
pub fn linuxModFd(self: *Loop, fd: i32, op: u32, flags: u32, resume_node: *ResumeNode) !void {
assert(flags & os.EPOLLET == os.EPOLLET);
var ev = os.linux.epoll_event{
.events = flags,
.data = os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) },
};
try os.epoll_ctl(self.os_data.epollfd, op, fd, &ev);
}
pub fn linuxRemoveFd(self: *Loop, fd: i32) void {
os.epoll_ctl(self.os_data.epollfd, os.linux.EPOLL_CTL_DEL, fd, null) catch {};
self.finishOneEvent();
}
pub fn linuxWaitFd(self: *Loop, fd: i32, flags: u32) void {
assert(flags & os.EPOLLET == os.EPOLLET);
assert(flags & os.EPOLLONESHOT == os.EPOLLONESHOT);
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = .Basic,
.handle = @frame(),
.overlapped = ResumeNode.overlapped_init,
},
};
var need_to_delete = false;
defer if (need_to_delete) self.linuxRemoveFd(fd);
suspend {
if (self.linuxAddFd(fd, &resume_node.base, flags)) |_| {
need_to_delete = true;
} else |err| switch (err) {
error.FileDescriptorNotRegistered => unreachable,
error.OperationCausesCircularLoop => unreachable,
error.FileDescriptorIncompatibleWithEpoll => unreachable,
error.FileDescriptorAlreadyPresentInSet => unreachable, // evented writes to the same fd is not thread-safe
error.SystemResources,
error.UserResourceLimitReached,
error.Unexpected,
=> {
// Fall back to a blocking poll(). Ideally this codepath is never hit, since
// epoll should be just fine. But this is better than incorrect behavior.
var poll_flags: i16 = 0;
if ((flags & os.EPOLLIN) != 0) poll_flags |= os.POLLIN;
if ((flags & os.EPOLLOUT) != 0) poll_flags |= os.POLLOUT;
var pfd = [1]os.pollfd{os.pollfd{
.fd = fd,
.events = poll_flags,
.revents = undefined,
}};
_ = os.poll(&pfd, -1) catch |poll_err| switch (poll_err) {
error.NetworkSubsystemFailed => unreachable, // only possible on windows
error.SystemResources,
error.Unexpected,
=> {
// Even poll() didn't work. The best we can do now is sleep for a
// small duration and then hope that something changed.
std.time.sleep(1 * std.time.ns_per_ms);
},
};
resume @frame();
},
}
}
}
pub fn waitUntilFdReadable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.EPOLLET | os.EPOLLONESHOT | os.EPOLLIN);
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_READ, os.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
pub fn waitUntilFdWritable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.EPOLLET | os.EPOLLONESHOT | os.EPOLLOUT);
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_WRITE, os.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
pub fn waitUntilFdWritableOrReadable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.EPOLLET | os.EPOLLONESHOT | os.EPOLLOUT | os.EPOLLIN);
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_READ, os.EV_ONESHOT);
self.bsdWaitKev(@intCast(usize, fd), os.EVFILT_WRITE, os.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
pub fn bsdWaitKev(self: *Loop, ident: usize, filter: i16, flags: u16) void {
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = ResumeNode.Id.Basic,
.handle = @frame(),
.overlapped = ResumeNode.overlapped_init,
},
.kev = undefined,
};
defer {
// If the kevent was set to be ONESHOT, it doesn't need to be deleted manually.
if (flags & os.EV_ONESHOT != 0) {
self.bsdRemoveKev(ident, filter);
}
}
suspend {
self.bsdAddKev(&resume_node, ident, filter, flags) catch unreachable;
}
}
/// resume_node must live longer than the anyframe that it holds a reference to.
pub fn bsdAddKev(self: *Loop, resume_node: *ResumeNode.Basic, ident: usize, filter: i16, flags: u16) !void {
self.beginOneEvent();
errdefer self.finishOneEvent();
var kev = [1]os.Kevent{os.Kevent{
.ident = ident,
.filter = filter,
.flags = os.EV_ADD | os.EV_ENABLE | os.EV_CLEAR | flags,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&resume_node.base),
}};
const empty_kevs = &[0]os.Kevent{};
_ = try os.kevent(self.os_data.kqfd, &kev, empty_kevs, null);
}
pub fn bsdRemoveKev(self: *Loop, ident: usize, filter: i16) void {
var kev = [1]os.Kevent{os.Kevent{
.ident = ident,
.filter = filter,
.flags = os.EV_DELETE,
.fflags = 0,
.data = 0,
.udata = 0,
}};
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(self.os_data.kqfd, &kev, empty_kevs, null) catch undefined;
self.finishOneEvent();
}
fn dispatch(self: *Loop) void {
while (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
const next_tick_node = self.next_tick_queue.get() orelse {
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
const eventfd_node = &resume_stack_node.data;
eventfd_node.base.handle = next_tick_node.data;
switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.kevent);
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
.linux => {
// the pending count is already accounted for
const epoll_events = os.EPOLLONESHOT | os.linux.EPOLLIN | os.linux.EPOLLOUT |
os.linux.EPOLLET;
self.linuxModFd(
eventfd_node.eventfd,
eventfd_node.epoll_op,
epoll_events,
&eventfd_node.base,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
.windows => {
windows.PostQueuedCompletionStatus(
self.os_data.io_port,
undefined,
undefined,
&eventfd_node.base.overlapped,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
else => @compileError("unsupported OS"),
}
}
}
/// Bring your own linked list node. This means it can't fail.
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
self.beginOneEvent(); // finished in dispatch()
self.next_tick_queue.put(node);
self.dispatch();
}
pub fn cancelOnNextTick(self: *Loop, node: *NextTickNode) void {
if (self.next_tick_queue.remove(node)) {
self.finishOneEvent();
}
}
pub fn run(self: *Loop) void {
self.finishOneEvent(); // the reference we start with
self.workerRun();
if (!builtin.single_threaded) {
switch (builtin.os.tag) {
.linux,
.macos,
.freebsd,
.netbsd,
.dragonfly,
.openbsd,
=> self.fs_thread.wait(),
else => {},
}
}
for (self.extra_threads) |extra_thread| {
extra_thread.wait();
}
@atomicStore(bool, &self.delay_queue.is_running, false, .SeqCst);
self.delay_queue.event.set();
self.delay_queue.thread.wait();
}
/// Runs the provided function asynchronously. The function's frame is allocated
/// with `allocator` and freed when the function returns.
/// `func` must return void and it can be an async function.
/// Yields to the event loop, running the function on the next tick.
pub fn runDetached(self: *Loop, alloc: *mem.Allocator, comptime func: anytype, args: anytype) error{OutOfMemory}!void {
if (!std.io.is_async) @compileError("Can't use runDetached in non-async mode!");
if (@TypeOf(@call(.{}, func, args)) != void) {
@compileError("`func` must not have a return value");
}
const Wrapper = struct {
const Args = @TypeOf(args);
fn run(func_args: Args, loop: *Loop, allocator: *mem.Allocator) void {
loop.beginOneEvent();
loop.yield();
const result = @call(.{}, func, func_args);
suspend {
loop.finishOneEvent();
allocator.destroy(@frame());
}
}
};
var run_frame = try alloc.create(@Frame(Wrapper.run));
run_frame.* = async Wrapper.run(args, self, alloc);
}
/// Yielding lets the event loop run, starting any unstarted async operations.
/// Note that async operations automatically start when a function yields for any other reason,
/// for example, when async I/O is performed. This function is intended to be used only when
/// CPU bound tasks would be waiting in the event loop but never get started because no async I/O
/// is performed.
pub fn yield(self: *Loop) void {
suspend {
var my_tick_node = NextTickNode{
.prev = undefined,
.next = undefined,
.data = @frame(),
};
self.onNextTick(&my_tick_node);
}
}
/// If the build is multi-threaded and there is an event loop, then it calls `yield`. Otherwise,
/// does nothing.
pub fn startCpuBoundOperation() void {
if (builtin.single_threaded) {
return;
} else if (instance) |event_loop| {
event_loop.yield();
}
}
/// call finishOneEvent when done
pub fn beginOneEvent(self: *Loop) void {
_ = @atomicRmw(usize, &self.pending_event_count, .Add, 1, .SeqCst);
}
pub fn finishOneEvent(self: *Loop) void {
nosuspend {
const prev = @atomicRmw(usize, &self.pending_event_count, .Sub, 1, .SeqCst);
if (prev != 1) return;
// cause all the threads to stop
self.posixFsRequest(&self.fs_end_request);
switch (builtin.os.tag) {
.linux => {
// writing to the eventfd will only wake up one thread, thus multiple writes
// are needed to wakeup all the threads
var i: usize = 0;
while (i < self.extra_threads.len + 1) : (i += 1) {
// writing 8 bytes to an eventfd cannot fail
const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable;
assert(amt == wakeup_bytes.len);
}
return;
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
const final_kevent = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
const empty_kevs = &[0]os.Kevent{};
// cannot fail because we already added it and this just enables it
_ = os.kevent(self.os_data.kqfd, final_kevent, empty_kevs, null) catch unreachable;
return;
},
.windows => {
var i: usize = 0;
while (i < self.extra_threads.len + 1) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
return;
},
else => @compileError("unsupported OS"),
}
}
}
pub fn sleep(self: *Loop, nanoseconds: u64) void {
if (std.builtin.single_threaded)
@compileError("TODO: integrate timers with epoll/kevent/iocp for single-threaded");
suspend {
const now = self.delay_queue.timer.read();
var entry: DelayQueue.Waiters.Entry = undefined;
entry.init(@frame(), now + nanoseconds);
self.delay_queue.waiters.insert(&entry);
// Speculatively wake up the timer thread when we add a new entry.
// If the timer thread is sleeping on a longer entry, we need to
// interrupt it so that our entry can be expired in time.
self.delay_queue.event.set();
}
}
const DelayQueue = struct {
timer: std.time.Timer,
waiters: Waiters,
thread: *std.Thread,
event: std.AutoResetEvent,
is_running: bool,
/// Initialize the delay queue by spawning the timer thread
/// and starting any timer resources.
fn init(self: *DelayQueue) !void {
self.* = DelayQueue{
.timer = try std.time.Timer.start(),
.waiters = DelayQueue.Waiters{
.entries = std.atomic.Queue(anyframe).init(),
},
.thread = try std.Thread.spawn(self, DelayQueue.run),
.event = std.AutoResetEvent{},
.is_running = true,
};
}
/// Entry point for the timer thread
/// which waits for timer entries to expire and reschedules them.
fn run(self: *DelayQueue) void {
const loop = @fieldParentPtr(Loop, "delay_queue", self);
while (@atomicLoad(bool, &self.is_running, .SeqCst)) {
const now = self.timer.read();
if (self.waiters.popExpired(now)) |entry| {
loop.onNextTick(&entry.node);
continue;
}
if (self.waiters.nextExpire()) |expires| {
if (now >= expires)
continue;
self.event.timedWait(expires - now) catch {};
} else {
self.event.wait();
}
}
}
// TODO: use a tickless heirarchical timer wheel:
// https://github.com/wahern/timeout/
const Waiters = struct {
entries: std.atomic.Queue(anyframe),
const Entry = struct {
node: NextTickNode,
expires: u64,
fn init(self: *Entry, frame: anyframe, expires: u64) void {
self.node.data = frame;
self.expires = expires;
}
};
/// Registers the entry into the queue of waiting frames
fn insert(self: *Waiters, entry: *Entry) void {
self.entries.put(&entry.node);
}
/// Dequeues one expired event relative to `now`
fn popExpired(self: *Waiters, now: u64) ?*Entry {
const entry = self.peekExpiringEntry() orelse return null;
if (entry.expires > now)
return null;
assert(self.entries.remove(&entry.node));
return entry;
}
/// Returns an estimate for the amount of time
/// to wait until the next waiting entry expires.
fn nextExpire(self: *Waiters) ?u64 {
const entry = self.peekExpiringEntry() orelse return null;
return entry.expires;
}
fn peekExpiringEntry(self: *Waiters) ?*Entry {
const held = self.entries.mutex.acquire();
defer held.release();
// starting from the head
var head = self.entries.head orelse return null;
// traverse the list of waiting entires to
// find the Node with the smallest `expires` field
var min = head;
while (head.next) |node| {
const minEntry = @fieldParentPtr(Entry, "node", min);
const nodeEntry = @fieldParentPtr(Entry, "node", node);
if (nodeEntry.expires < minEntry.expires)
min = node;
head = node;
}
return @fieldParentPtr(Entry, "node", min);
}
};
};
/// ------- I/0 APIs -------
pub fn accept(
self: *Loop,
/// This argument is a socket that has been created with `socket`, bound to a local address
/// with `bind`, and is listening for connections after a `listen`.
sockfd: os.fd_t,
/// This argument is a pointer to a sockaddr structure. This structure is filled in with the
/// address of the peer socket, as known to the communications layer. The exact format of the
/// address returned addr is determined by the socket's address family (see `socket` and the
/// respective protocol man pages).
addr: *os.sockaddr,
/// This argument is a value-result argument: the caller must initialize it to contain the
/// size (in bytes) of the structure pointed to by addr; on return it will contain the actual size
/// of the peer address.
///
/// The returned address is truncated if the buffer provided is too small; in this case, `addr_size`
/// will return a value greater than was supplied to the call.
addr_size: *os.socklen_t,
/// The following values can be bitwise ORed in flags to obtain different behavior:
/// * `SOCK_CLOEXEC` - Set the close-on-exec (`FD_CLOEXEC`) flag on the new file descriptor. See the
/// description of the `O_CLOEXEC` flag in `open` for reasons why this may be useful.
flags: u32,
) os.AcceptError!os.fd_t {
while (true) {
return os.accept(sockfd, addr, addr_size, flags | os.SOCK_NONBLOCK) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(sockfd);
continue;
},
else => return err,
};
}
}
pub fn connect(self: *Loop, sockfd: os.socket_t, sock_addr: *const os.sockaddr, len: os.socklen_t) os.ConnectError!void {
os.connect(sockfd, sock_addr, len) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(sockfd);
return os.getsockoptError(sockfd);
},
else => return err,
};
}
/// Performs an async `os.open` using a separate thread.
pub fn openZ(self: *Loop, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t {
var req_node = Request.Node{
.data = .{
.msg = .{
.open = .{
.path = file_path,
.flags = flags,
.mode = mode,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.open.result;
}
/// Performs an async `os.opent` using a separate thread.
pub fn openatZ(self: *Loop, fd: os.fd_t, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t {
var req_node = Request.Node{
.data = .{
.msg = .{
.openat = .{
.fd = fd,
.path = file_path,
.flags = flags,
.mode = mode,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.openat.result;
}
/// Performs an async `os.close` using a separate thread.
pub fn close(self: *Loop, fd: os.fd_t) void {
var req_node = Request.Node{
.data = .{
.msg = .{ .close = .{ .fd = fd } },
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
}
/// Performs an async `os.read` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn read(self: *Loop, fd: os.fd_t, buf: []u8, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.read = .{
.fd = fd,
.buf = buf,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.read.result;
} else {
while (true) {
return os.read(fd, buf) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
/// Performs an async `os.readv` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn readv(self: *Loop, fd: os.fd_t, iov: []const os.iovec, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.readv = .{
.fd = fd,
.iov = iov,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.readv.result;
} else {
while (true) {
return os.readv(fd, iov) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
/// Performs an async `os.pread` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pread(self: *Loop, fd: os.fd_t, buf: []u8, offset: u64, simulate_evented: bool) os.PReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pread = .{
.fd = fd,
.buf = buf,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pread.result;
} else {
while (true) {
return os.pread(fd, buf, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
/// Performs an async `os.preadv` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn preadv(self: *Loop, fd: os.fd_t, iov: []const os.iovec, offset: u64, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.preadv = .{
.fd = fd,
.iov = iov,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.preadv.result;
} else {
while (true) {
return os.preadv(fd, iov, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
/// Performs an async `os.write` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn write(self: *Loop, fd: os.fd_t, bytes: []const u8, simulate_evented: bool) os.WriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.write = .{
.fd = fd,
.bytes = bytes,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.write.result;
} else {
while (true) {
return os.write(fd, bytes) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
/// Performs an async `os.writev` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn writev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const, simulate_evented: bool) os.WriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.writev = .{
.fd = fd,
.iov = iov,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.writev.result;
} else {
while (true) {
return os.writev(fd, iov) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
/// Performs an async `os.pwrite` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pwrite(self: *Loop, fd: os.fd_t, bytes: []const u8, offset: u64, simulate_evented: bool) os.PerformsWriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pwrite = .{
.fd = fd,
.bytes = bytes,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pwrite.result;
} else {
while (true) {
return os.pwrite(fd, bytes, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
/// Performs an async `os.pwritev` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pwritev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const, offset: u64, simulate_evented: bool) os.PWriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pwritev = .{
.fd = fd,
.iov = iov,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pwritev.result;
} else {
while (true) {
return os.pwritev(fd, iov, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
pub fn sendto(
self: *Loop,
/// The file descriptor of the sending socket.
sockfd: os.fd_t,
/// Message to send.
buf: []const u8,
flags: u32,
dest_addr: ?*const os.sockaddr,
addrlen: os.socklen_t,
) os.SendToError!usize {
while (true) {
return os.sendto(sockfd, buf, flags, dest_addr, addrlen) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(sockfd);
continue;
},
else => return err,
};
}
}
pub fn recvfrom(
self: *Loop,
sockfd: os.fd_t,
buf: []u8,
flags: u32,
src_addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
) os.RecvFromError!usize {
while (true) {
return os.recvfrom(sockfd, buf, flags, src_addr, addrlen) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(sockfd);
continue;
},
else => return err,
};
}
}
/// Performs an async `os.faccessatZ` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn faccessatZ(
self: *Loop,
dirfd: os.fd_t,
path_z: [*:0]const u8,
mode: u32,
flags: u32,
) os.AccessError!void {
var req_node = Request.Node{
.data = .{
.msg = .{
.faccessat = .{
.dirfd = dirfd,
.path = path_z,
.mode = mode,
.flags = flags,
.result = undefined,
},
},
.finish = .{ .TickNode = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.faccessat.result;
}
fn workerRun(self: *Loop) void {
while (true) {
while (true) {
const next_tick_node = self.next_tick_queue.get() orelse break;
self.dispatch();
resume next_tick_node.data;
self.finishOneEvent();
}
switch (builtin.os.tag) {
.linux => {
// only process 1 event so we don't steal from other threads
var events: [1]os.linux.epoll_event = undefined;
const count = os.epoll_wait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.data.ptr);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.Basic => {},
.Stop => return,
.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
event_fd_node.epoll_op = os.EPOLL_CTL_MOD;
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
self.finishOneEvent();
}
}
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var eventlist: [1]os.Kevent = undefined;
const empty_kevs = &[0]os.Kevent{};
const count = os.kevent(self.os_data.kqfd, empty_kevs, eventlist[0..], null) catch unreachable;
for (eventlist[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.udata);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.Basic => {
const basic_node = @fieldParentPtr(ResumeNode.Basic, "base", resume_node);
basic_node.kev = ev;
},
.Stop => return,
.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
self.finishOneEvent();
}
}
},
.windows => {
var completion_key: usize = undefined;
const overlapped = while (true) {
var nbytes: windows.DWORD = undefined;
var overlapped: ?*windows.OVERLAPPED = undefined;
switch (windows.GetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) {
.Aborted => return,
.Normal => {},
.EOF => {},
.Cancelled => continue,
}
if (overlapped) |o| break o;
} else unreachable; // TODO else unreachable should not be necessary
const resume_node = @fieldParentPtr(ResumeNode, "overlapped", overlapped);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.Basic => {},
.Stop => return,
.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
self.finishOneEvent();
},
else => @compileError("unsupported OS"),
}
}
}
fn posixFsRequest(self: *Loop, request_node: *Request.Node) void {
self.beginOneEvent(); // finished in posixFsRun after processing the msg
self.fs_queue.put(request_node);
self.fs_thread_wakeup.set();
}
fn posixFsCancel(self: *Loop, request_node: *Request.Node) void {
if (self.fs_queue.remove(request_node)) {
self.finishOneEvent();
}
}
fn posixFsRun(self: *Loop) void {
nosuspend while (true) {
self.fs_thread_wakeup.reset();
while (self.fs_queue.get()) |node| {
switch (node.data.msg) {
.end => return,
.read => |*msg| {
msg.result = os.read(msg.fd, msg.buf);
},
.readv => |*msg| {
msg.result = os.readv(msg.fd, msg.iov);
},
.write => |*msg| {
msg.result = os.write(msg.fd, msg.bytes);
},
.writev => |*msg| {
msg.result = os.writev(msg.fd, msg.iov);
},
.pwrite => |*msg| {
msg.result = os.pwrite(msg.fd, msg.bytes, msg.offset);
},
.pwritev => |*msg| {
msg.result = os.pwritev(msg.fd, msg.iov, msg.offset);
},
.pread => |*msg| {
msg.result = os.pread(msg.fd, msg.buf, msg.offset);
},
.preadv => |*msg| {
msg.result = os.preadv(msg.fd, msg.iov, msg.offset);
},
.open => |*msg| {
if (is_windows) unreachable; // TODO
msg.result = os.openZ(msg.path, msg.flags, msg.mode);
},
.openat => |*msg| {
if (is_windows) unreachable; // TODO
msg.result = os.openatZ(msg.fd, msg.path, msg.flags, msg.mode);
},
.faccessat => |*msg| {
msg.result = os.faccessatZ(msg.dirfd, msg.path, msg.mode, msg.flags);
},
.close => |*msg| os.close(msg.fd),
}
switch (node.data.finish) {
.TickNode => |*tick_node| self.onNextTick(tick_node),
.NoAction => {},
}
self.finishOneEvent();
}
self.fs_thread_wakeup.wait();
};
}
const OsData = switch (builtin.os.tag) {
.linux => LinuxOsData,
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventData,
.windows => struct {
io_port: windows.HANDLE,
extra_thread_count: usize,
},
else => struct {},
};
const KEventData = struct {
kqfd: i32,
final_kevent: os.Kevent,
};
const LinuxOsData = struct {
epollfd: i32,
final_eventfd: i32,
final_eventfd_event: os.linux.epoll_event,
};
pub const Request = struct {
msg: Msg,
finish: Finish,
pub const Node = std.atomic.Queue(Request).Node;
pub const Finish = union(enum) {
TickNode: Loop.NextTickNode,
NoAction,
};
pub const Msg = union(enum) {
read: Read,
readv: ReadV,
write: Write,
writev: WriteV,
pwrite: PWrite,
pwritev: PWriteV,
pread: PRead,
preadv: PReadV,
open: Open,
openat: OpenAt,
close: Close,
faccessat: FAccessAt,
/// special - means the fs thread should exit
end,
pub const Read = struct {
fd: os.fd_t,
buf: []u8,
result: Error!usize,
pub const Error = os.ReadError;
};
pub const ReadV = struct {
fd: os.fd_t,
iov: []const os.iovec,
result: Error!usize,
pub const Error = os.ReadError;
};
pub const Write = struct {
fd: os.fd_t,
bytes: []const u8,
result: Error!usize,
pub const Error = os.WriteError;
};
pub const WriteV = struct {
fd: os.fd_t,
iov: []const os.iovec_const,
result: Error!usize,
pub const Error = os.WriteError;
};
pub const PWrite = struct {
fd: os.fd_t,
bytes: []const u8,
offset: usize,
result: Error!usize,
pub const Error = os.PWriteError;
};
pub const PWriteV = struct {
fd: os.fd_t,
iov: []const os.iovec_const,
offset: usize,
result: Error!usize,
pub const Error = os.PWriteError;
};
pub const PRead = struct {
fd: os.fd_t,
buf: []u8,
offset: usize,
result: Error!usize,
pub const Error = os.PReadError;
};
pub const PReadV = struct {
fd: os.fd_t,
iov: []const os.iovec,
offset: usize,
result: Error!usize,
pub const Error = os.PReadError;
};
pub const Open = struct {
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
result: Error!os.fd_t,
pub const Error = os.OpenError;
};
pub const OpenAt = struct {
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
result: Error!os.fd_t,
pub const Error = os.OpenError;
};
pub const Close = struct {
fd: os.fd_t,
};
pub const FAccessAt = struct {
dirfd: os.fd_t,
path: [*:0]const u8,
mode: u32,
flags: u32,
result: Error!void,
pub const Error = os.AccessError;
};
};
};
};
test "std.event.Loop - basic" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (true) {
// https://github.com/ziglang/zig/issues/4922
return error.SkipZigTest;
}
var loop: Loop = undefined;
try loop.initMultiThreaded();
defer loop.deinit();
loop.run();
}
fn testEventLoop() i32 {
return 1234;
}
fn testEventLoop2(h: anyframe->i32, did_it: *bool) void {
const value = await h;
testing.expect(value == 1234);
did_it.* = true;
}
var testRunDetachedData: usize = 0;
test "std.event.Loop - runDetached" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (!std.io.is_async) return error.SkipZigTest;
if (true) {
// https://github.com/ziglang/zig/issues/4922
return error.SkipZigTest;
}
var loop: Loop = undefined;
try loop.initMultiThreaded();
defer loop.deinit();
// Schedule the execution, won't actually start until we start the
// event loop.
try loop.runDetached(std.testing.allocator, testRunDetached, .{});
// Now we can start the event loop. The function will return only
// after all tasks have been completed, allowing us to synchonize
// with the previous runDetached.
loop.run();
testing.expect(testRunDetachedData == 1);
}
fn testRunDetached() void {
testRunDetachedData += 1;
}
test "std.event.Loop - sleep" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (!std.io.is_async) return error.SkipZigTest;
const frames = try testing.allocator.alloc(@Frame(testSleep), 10);
defer testing.allocator.free(frames);
const wait_time = 100 * std.time.ns_per_ms;
var sleep_count: usize = 0;
for (frames) |*frame|
frame.* = async testSleep(wait_time, &sleep_count);
for (frames) |*frame|
await frame;
testing.expect(sleep_count == frames.len);
}
fn testSleep(wait_ns: u64, sleep_count: *usize) void {
Loop.instance.?.sleep(wait_ns);
_ = @atomicRmw(usize, sleep_count, .Add, 1, .SeqCst);
}