zig/lib/compiler_rt/fma.zig
Luuk de Gram 30f2bb8464
compiler-rt: Set the symbol visibility
When we're compiling compiler_rt for any WebAssembly target, we do
not want to expose all the compiler-rt functions to the host runtime.
By setting the visibility of all exports to `hidden`, we allow the
linker to resolve the symbols during linktime, while not expose the
functions to the host runtime. This also means the linker can
properly garbage collect any compiler-rt function that does not get
resolved. The symbol visibility for all target remains the same as
before: `default`.
2022-12-28 14:57:17 +01:00

356 lines
11 KiB
Zig

//! Ported from musl, which is MIT licensed:
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//!
//! https://git.musl-libc.org/cgit/musl/tree/src/math/fmal.c
//! https://git.musl-libc.org/cgit/musl/tree/src/math/fmaf.c
//! https://git.musl-libc.org/cgit/musl/tree/src/math/fma.c
const std = @import("std");
const builtin = @import("builtin");
const math = std.math;
const expect = std.testing.expect;
const arch = builtin.cpu.arch;
const common = @import("common.zig");
pub const panic = common.panic;
comptime {
@export(__fmah, .{ .name = "__fmah", .linkage = common.linkage, .visibility = common.visibility });
@export(fmaf, .{ .name = "fmaf", .linkage = common.linkage, .visibility = common.visibility });
@export(fma, .{ .name = "fma", .linkage = common.linkage, .visibility = common.visibility });
@export(__fmax, .{ .name = "__fmax", .linkage = common.linkage, .visibility = common.visibility });
if (common.want_ppc_abi) {
@export(fmaq, .{ .name = "fmaf128", .linkage = common.linkage, .visibility = common.visibility });
}
@export(fmaq, .{ .name = "fmaq", .linkage = common.linkage, .visibility = common.visibility });
@export(fmal, .{ .name = "fmal", .linkage = common.linkage, .visibility = common.visibility });
}
pub fn __fmah(x: f16, y: f16, z: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, fmaf(x, y, z));
}
pub fn fmaf(x: f32, y: f32, z: f32) callconv(.C) f32 {
const xy = @as(f64, x) * y;
const xy_z = xy + z;
const u = @bitCast(u64, xy_z);
const e = (u >> 52) & 0x7FF;
if ((u & 0x1FFFFFFF) != 0x10000000 or e == 0x7FF or (xy_z - xy == z and xy_z - z == xy)) {
return @floatCast(f32, xy_z);
} else {
// TODO: Handle inexact case with double-rounding
return @floatCast(f32, xy_z);
}
}
/// NOTE: Upstream fma.c has been rewritten completely to raise fp exceptions more accurately.
pub fn fma(x: f64, y: f64, z: f64) callconv(.C) f64 {
if (!math.isFinite(x) or !math.isFinite(y)) {
return x * y + z;
}
if (!math.isFinite(z)) {
return z;
}
if (x == 0.0 or y == 0.0) {
return x * y + z;
}
if (z == 0.0) {
return x * y;
}
const x1 = math.frexp(x);
var ex = x1.exponent;
var xs = x1.significand;
const x2 = math.frexp(y);
var ey = x2.exponent;
var ys = x2.significand;
const x3 = math.frexp(z);
var ez = x3.exponent;
var zs = x3.significand;
var spread = ex + ey - ez;
if (spread <= 53 * 2) {
zs = math.scalbn(zs, -spread);
} else {
zs = math.copysign(math.floatMin(f64), zs);
}
const xy = dd_mul(xs, ys);
const r = dd_add(xy.hi, zs);
spread = ex + ey;
if (r.hi == 0.0) {
return xy.hi + zs + math.scalbn(xy.lo, spread);
}
const adj = add_adjusted(r.lo, xy.lo);
if (spread + math.ilogb(r.hi) > -1023) {
return math.scalbn(r.hi + adj, spread);
} else {
return add_and_denorm(r.hi, adj, spread);
}
}
pub fn __fmax(a: f80, b: f80, c: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, fmaq(a, b, c));
}
/// Fused multiply-add: Compute x * y + z with a single rounding error.
///
/// We use scaling to avoid overflow/underflow, along with the
/// canonical precision-doubling technique adapted from:
///
/// Dekker, T. A Floating-Point Technique for Extending the
/// Available Precision. Numer. Math. 18, 224-242 (1971).
pub fn fmaq(x: f128, y: f128, z: f128) callconv(.C) f128 {
if (!math.isFinite(x) or !math.isFinite(y)) {
return x * y + z;
}
if (!math.isFinite(z)) {
return z;
}
if (x == 0.0 or y == 0.0) {
return x * y + z;
}
if (z == 0.0) {
return x * y;
}
const x1 = math.frexp(x);
var ex = x1.exponent;
var xs = x1.significand;
const x2 = math.frexp(y);
var ey = x2.exponent;
var ys = x2.significand;
const x3 = math.frexp(z);
var ez = x3.exponent;
var zs = x3.significand;
var spread = ex + ey - ez;
if (spread <= 113 * 2) {
zs = math.scalbn(zs, -spread);
} else {
zs = math.copysign(math.floatMin(f128), zs);
}
const xy = dd_mul128(xs, ys);
const r = dd_add128(xy.hi, zs);
spread = ex + ey;
if (r.hi == 0.0) {
return xy.hi + zs + math.scalbn(xy.lo, spread);
}
const adj = add_adjusted128(r.lo, xy.lo);
if (spread + math.ilogb(r.hi) > -16383) {
return math.scalbn(r.hi + adj, spread);
} else {
return add_and_denorm128(r.hi, adj, spread);
}
}
pub fn fmal(x: c_longdouble, y: c_longdouble, z: c_longdouble) callconv(.C) c_longdouble {
switch (@typeInfo(c_longdouble).Float.bits) {
16 => return __fmah(x, y, z),
32 => return fmaf(x, y, z),
64 => return fma(x, y, z),
80 => return __fmax(x, y, z),
128 => return fmaq(x, y, z),
else => @compileError("unreachable"),
}
}
const dd = struct {
hi: f64,
lo: f64,
};
fn dd_add(a: f64, b: f64) dd {
var ret: dd = undefined;
ret.hi = a + b;
const s = ret.hi - a;
ret.lo = (a - (ret.hi - s)) + (b - s);
return ret;
}
fn dd_mul(a: f64, b: f64) dd {
var ret: dd = undefined;
const split: f64 = 0x1.0p27 + 1.0;
var p = a * split;
var ha = a - p;
ha += p;
var la = a - ha;
p = b * split;
var hb = b - p;
hb += p;
var lb = b - hb;
p = ha * hb;
var q = ha * lb + la * hb;
ret.hi = p + q;
ret.lo = p - ret.hi + q + la * lb;
return ret;
}
fn add_adjusted(a: f64, b: f64) f64 {
var sum = dd_add(a, b);
if (sum.lo != 0) {
var uhii = @bitCast(u64, sum.hi);
if (uhii & 1 == 0) {
// hibits += copysign(1.0, sum.hi, sum.lo)
const uloi = @bitCast(u64, sum.lo);
uhii += 1 - ((uhii ^ uloi) >> 62);
sum.hi = @bitCast(f64, uhii);
}
}
return sum.hi;
}
fn add_and_denorm(a: f64, b: f64, scale: i32) f64 {
var sum = dd_add(a, b);
if (sum.lo != 0) {
var uhii = @bitCast(u64, sum.hi);
const bits_lost = -@intCast(i32, (uhii >> 52) & 0x7FF) - scale + 1;
if ((bits_lost != 1) == (uhii & 1 != 0)) {
const uloi = @bitCast(u64, sum.lo);
uhii += 1 - (((uhii ^ uloi) >> 62) & 2);
sum.hi = @bitCast(f64, uhii);
}
}
return math.scalbn(sum.hi, scale);
}
/// A struct that represents a floating-point number with twice the precision
/// of f128. We maintain the invariant that "hi" stores the high-order
/// bits of the result.
const dd128 = struct {
hi: f128,
lo: f128,
};
/// Compute a+b exactly, returning the exact result in a struct dd. We assume
/// that both a and b are finite, but make no assumptions about their relative
/// magnitudes.
fn dd_add128(a: f128, b: f128) dd128 {
var ret: dd128 = undefined;
ret.hi = a + b;
const s = ret.hi - a;
ret.lo = (a - (ret.hi - s)) + (b - s);
return ret;
}
/// Compute a+b, with a small tweak: The least significant bit of the
/// result is adjusted into a sticky bit summarizing all the bits that
/// were lost to rounding. This adjustment negates the effects of double
/// rounding when the result is added to another number with a higher
/// exponent. For an explanation of round and sticky bits, see any reference
/// on FPU design, e.g.,
///
/// J. Coonen. An Implementation Guide to a Proposed Standard for
/// Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
fn add_adjusted128(a: f128, b: f128) f128 {
var sum = dd_add128(a, b);
if (sum.lo != 0) {
var uhii = @bitCast(u128, sum.hi);
if (uhii & 1 == 0) {
// hibits += copysign(1.0, sum.hi, sum.lo)
const uloi = @bitCast(u128, sum.lo);
uhii += 1 - ((uhii ^ uloi) >> 126);
sum.hi = @bitCast(f128, uhii);
}
}
return sum.hi;
}
/// Compute ldexp(a+b, scale) with a single rounding error. It is assumed
/// that the result will be subnormal, and care is taken to ensure that
/// double rounding does not occur.
fn add_and_denorm128(a: f128, b: f128, scale: i32) f128 {
var sum = dd_add128(a, b);
// If we are losing at least two bits of accuracy to denormalization,
// then the first lost bit becomes a round bit, and we adjust the
// lowest bit of sum.hi to make it a sticky bit summarizing all the
// bits in sum.lo. With the sticky bit adjusted, the hardware will
// break any ties in the correct direction.
//
// If we are losing only one bit to denormalization, however, we must
// break the ties manually.
if (sum.lo != 0) {
var uhii = @bitCast(u128, sum.hi);
const bits_lost = -@intCast(i32, (uhii >> 112) & 0x7FFF) - scale + 1;
if ((bits_lost != 1) == (uhii & 1 != 0)) {
const uloi = @bitCast(u128, sum.lo);
uhii += 1 - (((uhii ^ uloi) >> 126) & 2);
sum.hi = @bitCast(f128, uhii);
}
}
return math.scalbn(sum.hi, scale);
}
/// Compute a*b exactly, returning the exact result in a struct dd. We assume
/// that both a and b are normalized, so no underflow or overflow will occur.
/// The current rounding mode must be round-to-nearest.
fn dd_mul128(a: f128, b: f128) dd128 {
var ret: dd128 = undefined;
const split: f128 = 0x1.0p57 + 1.0;
var p = a * split;
var ha = a - p;
ha += p;
var la = a - ha;
p = b * split;
var hb = b - p;
hb += p;
var lb = b - hb;
p = ha * hb;
var q = ha * lb + la * hb;
ret.hi = p + q;
ret.lo = p - ret.hi + q + la * lb;
return ret;
}
test "32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, fmaf(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f32, fmaf(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f32, fmaf(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f32, fmaf(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f32, fmaf(37.45, 5.0, 9.124), 196.374004, epsilon));
try expect(math.approxEqAbs(f32, fmaf(89.123, 5.0, 9.124), 454.739005, epsilon));
try expect(math.approxEqAbs(f32, fmaf(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}
test "64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, fma(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f64, fma(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f64, fma(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f64, fma(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f64, fma(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f64, fma(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f64, fma(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}
test "128" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f128, fmaq(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f128, fmaq(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f128, fmaq(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f128, fmaq(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f128, fmaq(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f128, fmaq(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f128, fmaq(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}