mirror of
https://github.com/ziglang/zig.git
synced 2024-12-04 19:09:32 +00:00
169 lines
4.7 KiB
Zig
169 lines
4.7 KiB
Zig
// SPDX-License-Identifier: MIT
|
|
// Copyright (c) 2015-2021 Zig Contributors
|
|
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
|
|
// The MIT license requires this copyright notice to be included in all copies
|
|
// and substantial portions of the software.
|
|
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrtf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrt.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns the cube root of x.
|
|
///
|
|
/// Special Cases:
|
|
/// - cbrt(+-0) = +-0
|
|
/// - cbrt(+-inf) = +-inf
|
|
/// - cbrt(nan) = nan
|
|
pub fn cbrt(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => cbrt32(x),
|
|
f64 => cbrt64(x),
|
|
else => @compileError("cbrt not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn cbrt32(x: f32) f32 {
|
|
const B1: u32 = 709958130; // (127 - 127.0 / 3 - 0.03306235651) * 2^23
|
|
const B2: u32 = 642849266; // (127 - 127.0 / 3 - 24 / 3 - 0.03306235651) * 2^23
|
|
|
|
var u = @bitCast(u32, x);
|
|
var hx = u & 0x7FFFFFFF;
|
|
|
|
// cbrt(nan, inf) = itself
|
|
if (hx >= 0x7F800000) {
|
|
return x + x;
|
|
}
|
|
|
|
// cbrt to ~5bits
|
|
if (hx < 0x00800000) {
|
|
// cbrt(+-0) = itself
|
|
if (hx == 0) {
|
|
return x;
|
|
}
|
|
u = @bitCast(u32, x * 0x1.0p24);
|
|
hx = u & 0x7FFFFFFF;
|
|
hx = hx / 3 + B2;
|
|
} else {
|
|
hx = hx / 3 + B1;
|
|
}
|
|
|
|
u &= 0x80000000;
|
|
u |= hx;
|
|
|
|
// first step newton to 16 bits
|
|
var t: f64 = @bitCast(f32, u);
|
|
var r: f64 = t * t * t;
|
|
t = t * (@as(f64, x) + x + r) / (x + r + r);
|
|
|
|
// second step newton to 47 bits
|
|
r = t * t * t;
|
|
t = t * (@as(f64, x) + x + r) / (x + r + r);
|
|
|
|
return @floatCast(f32, t);
|
|
}
|
|
|
|
fn cbrt64(x: f64) f64 {
|
|
const B1: u32 = 715094163; // (1023 - 1023 / 3 - 0.03306235651 * 2^20
|
|
const B2: u32 = 696219795; // (1023 - 1023 / 3 - 54 / 3 - 0.03306235651 * 2^20
|
|
|
|
// |1 / cbrt(x) - p(x)| < 2^(23.5)
|
|
const P0: f64 = 1.87595182427177009643;
|
|
const P1: f64 = -1.88497979543377169875;
|
|
const P2: f64 = 1.621429720105354466140;
|
|
const P3: f64 = -0.758397934778766047437;
|
|
const P4: f64 = 0.145996192886612446982;
|
|
|
|
var u = @bitCast(u64, x);
|
|
var hx = @intCast(u32, u >> 32) & 0x7FFFFFFF;
|
|
|
|
// cbrt(nan, inf) = itself
|
|
if (hx >= 0x7FF00000) {
|
|
return x + x;
|
|
}
|
|
|
|
// cbrt to ~5bits
|
|
if (hx < 0x00100000) {
|
|
u = @bitCast(u64, x * 0x1.0p54);
|
|
hx = @intCast(u32, u >> 32) & 0x7FFFFFFF;
|
|
|
|
// cbrt(0) is itself
|
|
if (hx == 0) {
|
|
return 0;
|
|
}
|
|
hx = hx / 3 + B2;
|
|
} else {
|
|
hx = hx / 3 + B1;
|
|
}
|
|
|
|
u &= 1 << 63;
|
|
u |= @as(u64, hx) << 32;
|
|
var t = @bitCast(f64, u);
|
|
|
|
// cbrt to 23 bits
|
|
// cbrt(x) = t * cbrt(x / t^3) ~= t * P(t^3 / x)
|
|
var r = (t * t) * (t / x);
|
|
t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
|
|
|
|
// Round t away from 0 to 23 bits
|
|
u = @bitCast(u64, t);
|
|
u = (u + 0x80000000) & 0xFFFFFFFFC0000000;
|
|
t = @bitCast(f64, u);
|
|
|
|
// one step newton to 53 bits
|
|
const s = t * t;
|
|
var q = x / s;
|
|
var w = t + t;
|
|
q = (q - t) / (w + q);
|
|
|
|
return t + t * q;
|
|
}
|
|
|
|
test "math.cbrt" {
|
|
expect(cbrt(@as(f32, 0.0)) == cbrt32(0.0));
|
|
expect(cbrt(@as(f64, 0.0)) == cbrt64(0.0));
|
|
}
|
|
|
|
test "math.cbrt32" {
|
|
const epsilon = 0.000001;
|
|
|
|
expect(cbrt32(0.0) == 0.0);
|
|
expect(math.approxEqAbs(f32, cbrt32(0.2), 0.584804, epsilon));
|
|
expect(math.approxEqAbs(f32, cbrt32(0.8923), 0.962728, epsilon));
|
|
expect(math.approxEqAbs(f32, cbrt32(1.5), 1.144714, epsilon));
|
|
expect(math.approxEqAbs(f32, cbrt32(37.45), 3.345676, epsilon));
|
|
expect(math.approxEqAbs(f32, cbrt32(123123.234375), 49.748501, epsilon));
|
|
}
|
|
|
|
test "math.cbrt64" {
|
|
const epsilon = 0.000001;
|
|
|
|
expect(cbrt64(0.0) == 0.0);
|
|
expect(math.approxEqAbs(f64, cbrt64(0.2), 0.584804, epsilon));
|
|
expect(math.approxEqAbs(f64, cbrt64(0.8923), 0.962728, epsilon));
|
|
expect(math.approxEqAbs(f64, cbrt64(1.5), 1.144714, epsilon));
|
|
expect(math.approxEqAbs(f64, cbrt64(37.45), 3.345676, epsilon));
|
|
expect(math.approxEqAbs(f64, cbrt64(123123.234375), 49.748501, epsilon));
|
|
}
|
|
|
|
test "math.cbrt.special" {
|
|
expect(cbrt32(0.0) == 0.0);
|
|
expect(cbrt32(-0.0) == -0.0);
|
|
expect(math.isPositiveInf(cbrt32(math.inf(f32))));
|
|
expect(math.isNegativeInf(cbrt32(-math.inf(f32))));
|
|
expect(math.isNan(cbrt32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.cbrt64.special" {
|
|
expect(cbrt64(0.0) == 0.0);
|
|
expect(cbrt64(-0.0) == -0.0);
|
|
expect(math.isPositiveInf(cbrt64(math.inf(f64))));
|
|
expect(math.isNegativeInf(cbrt64(-math.inf(f64))));
|
|
expect(math.isNan(cbrt64(math.nan(f64))));
|
|
}
|