zig/lib/std/math/expm1.zig
Frank Denis 6c2e0c2046 Year++
2020-12-31 15:45:24 -08:00

334 lines
8.2 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/expmf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/expm.c
// TODO: Updated recently.
const builtin = @import("builtin");
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
/// Returns e raised to the power of x, minus 1 (e^x - 1). This is more accurate than exp(e, x) - 1
/// when x is near 0.
///
/// Special Cases:
/// - expm1(+inf) = +inf
/// - expm1(-inf) = -1
/// - expm1(nan) = nan
pub fn expm1(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => expm1_32(x),
f64 => expm1_64(x),
else => @compileError("exp1m not implemented for " ++ @typeName(T)),
};
}
fn expm1_32(x_: f32) f32 {
if (math.isNan(x_))
return math.nan(f32);
const o_threshold: f32 = 8.8721679688e+01;
const ln2_hi: f32 = 6.9313812256e-01;
const ln2_lo: f32 = 9.0580006145e-06;
const invln2: f32 = 1.4426950216e+00;
const Q1: f32 = -3.3333212137e-2;
const Q2: f32 = 1.5807170421e-3;
var x = x_;
const ux = @bitCast(u32, x);
const hx = ux & 0x7FFFFFFF;
const sign = hx >> 31;
// TODO: Shouldn't need this check explicitly.
if (math.isNegativeInf(x)) {
return -1.0;
}
// |x| >= 27 * ln2
if (hx >= 0x4195B844) {
// nan
if (hx > 0x7F800000) {
return x;
}
if (sign != 0) {
return -1;
}
if (x > o_threshold) {
x *= 0x1.0p127;
return x;
}
}
var hi: f32 = undefined;
var lo: f32 = undefined;
var c: f32 = undefined;
var k: i32 = undefined;
// |x| > 0.5 * ln2
if (hx > 0x3EB17218) {
// |x| < 1.5 * ln2
if (hx < 0x3F851592) {
if (sign == 0) {
hi = x - ln2_hi;
lo = ln2_lo;
k = 1;
} else {
hi = x + ln2_hi;
lo = -ln2_lo;
k = -1;
}
} else {
var kf = invln2 * x;
if (sign != 0) {
kf -= 0.5;
} else {
kf += 0.5;
}
k = @floatToInt(i32, kf);
const t = @intToFloat(f32, k);
hi = x - t * ln2_hi;
lo = t * ln2_lo;
}
x = hi - lo;
c = (hi - x) - lo;
}
// |x| < 2^(-25)
else if (hx < 0x33000000) {
if (hx < 0x00800000) {
math.doNotOptimizeAway(x * x);
}
return x;
} else {
k = 0;
}
const hfx = 0.5 * x;
const hxs = x * hfx;
const r1 = 1.0 + hxs * (Q1 + hxs * Q2);
const t = 3.0 - r1 * hfx;
var e = hxs * ((r1 - t) / (6.0 - x * t));
// c is 0
if (k == 0) {
return x - (x * e - hxs);
}
e = x * (e - c) - c;
e -= hxs;
// exp(x) ~ 2^k (x_reduced - e + 1)
if (k == -1) {
return 0.5 * (x - e) - 0.5;
}
if (k == 1) {
if (x < -0.25) {
return -2.0 * (e - (x + 0.5));
} else {
return 1.0 + 2.0 * (x - e);
}
}
const twopk = @bitCast(f32, @intCast(u32, (0x7F +% k) << 23));
if (k < 0 or k > 56) {
var y = x - e + 1.0;
if (k == 128) {
y = y * 2.0 * 0x1.0p127;
} else {
y = y * twopk;
}
return y - 1.0;
}
const uf = @bitCast(f32, @intCast(u32, 0x7F -% k) << 23);
if (k < 23) {
return (x - e + (1 - uf)) * twopk;
} else {
return (x - (e + uf) + 1) * twopk;
}
}
fn expm1_64(x_: f64) f64 {
if (math.isNan(x_))
return math.nan(f64);
const o_threshold: f64 = 7.09782712893383973096e+02;
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const invln2: f64 = 1.44269504088896338700e+00;
const Q1: f64 = -3.33333333333331316428e-02;
const Q2: f64 = 1.58730158725481460165e-03;
const Q3: f64 = -7.93650757867487942473e-05;
const Q4: f64 = 4.00821782732936239552e-06;
const Q5: f64 = -2.01099218183624371326e-07;
var x = x_;
const ux = @bitCast(u64, x);
const hx = @intCast(u32, ux >> 32) & 0x7FFFFFFF;
const sign = ux >> 63;
if (math.isNegativeInf(x)) {
return -1.0;
}
// |x| >= 56 * ln2
if (hx >= 0x4043687A) {
// exp1md(nan) = nan
if (hx > 0x7FF00000) {
return x;
}
// exp1md(-ve) = -1
if (sign != 0) {
return -1;
}
if (x > o_threshold) {
math.raiseOverflow();
return math.inf(f64);
}
}
var hi: f64 = undefined;
var lo: f64 = undefined;
var c: f64 = undefined;
var k: i32 = undefined;
// |x| > 0.5 * ln2
if (hx > 0x3FD62E42) {
// |x| < 1.5 * ln2
if (hx < 0x3FF0A2B2) {
if (sign == 0) {
hi = x - ln2_hi;
lo = ln2_lo;
k = 1;
} else {
hi = x + ln2_hi;
lo = -ln2_lo;
k = -1;
}
} else {
var kf = invln2 * x;
if (sign != 0) {
kf -= 0.5;
} else {
kf += 0.5;
}
k = @floatToInt(i32, kf);
const t = @intToFloat(f64, k);
hi = x - t * ln2_hi;
lo = t * ln2_lo;
}
x = hi - lo;
c = (hi - x) - lo;
}
// |x| < 2^(-54)
else if (hx < 0x3C900000) {
if (hx < 0x00100000) {
math.doNotOptimizeAway(@floatCast(f32, x));
}
return x;
} else {
k = 0;
}
const hfx = 0.5 * x;
const hxs = x * hfx;
const r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
const t = 3.0 - r1 * hfx;
var e = hxs * ((r1 - t) / (6.0 - x * t));
// c is 0
if (k == 0) {
return x - (x * e - hxs);
}
e = x * (e - c) - c;
e -= hxs;
// exp(x) ~ 2^k (x_reduced - e + 1)
if (k == -1) {
return 0.5 * (x - e) - 0.5;
}
if (k == 1) {
if (x < -0.25) {
return -2.0 * (e - (x + 0.5));
} else {
return 1.0 + 2.0 * (x - e);
}
}
const twopk = @bitCast(f64, @intCast(u64, 0x3FF +% k) << 52);
if (k < 0 or k > 56) {
var y = x - e + 1.0;
if (k == 1024) {
y = y * 2.0 * 0x1.0p1023;
} else {
y = y * twopk;
}
return y - 1.0;
}
const uf = @bitCast(f64, @intCast(u64, 0x3FF -% k) << 52);
if (k < 20) {
return (x - e + (1 - uf)) * twopk;
} else {
return (x - (e + uf) + 1) * twopk;
}
}
test "math.exp1m" {
expect(expm1(@as(f32, 0.0)) == expm1_32(0.0));
expect(expm1(@as(f64, 0.0)) == expm1_64(0.0));
}
test "math.expm1_32" {
const epsilon = 0.000001;
expect(expm1_32(0.0) == 0.0);
expect(math.approxEqAbs(f32, expm1_32(0.0), 0.0, epsilon));
expect(math.approxEqAbs(f32, expm1_32(0.2), 0.221403, epsilon));
expect(math.approxEqAbs(f32, expm1_32(0.8923), 1.440737, epsilon));
expect(math.approxEqAbs(f32, expm1_32(1.5), 3.481689, epsilon));
}
test "math.expm1_64" {
const epsilon = 0.000001;
expect(expm1_64(0.0) == 0.0);
expect(math.approxEqAbs(f64, expm1_64(0.0), 0.0, epsilon));
expect(math.approxEqAbs(f64, expm1_64(0.2), 0.221403, epsilon));
expect(math.approxEqAbs(f64, expm1_64(0.8923), 1.440737, epsilon));
expect(math.approxEqAbs(f64, expm1_64(1.5), 3.481689, epsilon));
}
test "math.expm1_32.special" {
const epsilon = 0.000001;
expect(math.isPositiveInf(expm1_32(math.inf(f32))));
expect(expm1_32(-math.inf(f32)) == -1.0);
expect(math.isNan(expm1_32(math.nan(f32))));
}
test "math.expm1_64.special" {
const epsilon = 0.000001;
expect(math.isPositiveInf(expm1_64(math.inf(f64))));
expect(expm1_64(-math.inf(f64)) == -1.0);
expect(math.isNan(expm1_64(math.nan(f64))));
}