zig/lib/std/math/log10.zig
Frank Denis 6c2e0c2046 Year++
2020-12-31 15:45:24 -08:00

222 lines
7.0 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10.c
const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
const maxInt = std.math.maxInt;
/// Returns the base-10 logarithm of x.
///
/// Special Cases:
/// - log10(+inf) = +inf
/// - log10(0) = -inf
/// - log10(x) = nan if x < 0
/// - log10(nan) = nan
pub fn log10(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
switch (@typeInfo(T)) {
.ComptimeFloat => {
return @as(comptime_float, log10_64(x));
},
.Float => {
return switch (T) {
f32 => log10_32(x),
f64 => log10_64(x),
else => @compileError("log10 not implemented for " ++ @typeName(T)),
};
},
.ComptimeInt => {
return @as(comptime_int, math.floor(log10_64(@as(f64, x))));
},
.Int => {
return @floatToInt(T, math.floor(log10_64(@intToFloat(f64, x))));
},
else => @compileError("log10 not implemented for " ++ @typeName(T)),
}
}
pub fn log10_32(x_: f32) f32 {
const ivln10hi: f32 = 4.3432617188e-01;
const ivln10lo: f32 = -3.1689971365e-05;
const log10_2hi: f32 = 3.0102920532e-01;
const log10_2lo: f32 = 7.9034151668e-07;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
const dk = @intToFloat(f32, k);
return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
}
pub fn log10_64(x_: f64) f64 {
const ivln10hi: f64 = 4.34294481878168880939e-01;
const ivln10lo: f64 = 2.50829467116452752298e-11;
const log10_2hi: f64 = 3.01029995663611771306e-01;
const log10_2lo: f64 = 3.69423907715893078616e-13;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
// val_hi + val_lo ~ log10(1 + f) + k * log10(2)
var val_hi = hi * ivln10hi;
const dk = @intToFloat(f64, k);
const y = dk * log10_2hi;
var val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
// Extra precision multiplication
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
test "math.log10" {
testing.expect(log10(@as(f32, 0.2)) == log10_32(0.2));
testing.expect(log10(@as(f64, 0.2)) == log10_64(0.2));
}
test "math.log10_32" {
const epsilon = 0.000001;
testing.expect(math.approxEqAbs(f32, log10_32(0.2), -0.698970, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(0.8923), -0.049489, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(1.5), 0.176091, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(37.45), 1.573452, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(89.123), 1.94999, epsilon));
testing.expect(math.approxEqAbs(f32, log10_32(123123.234375), 5.09034, epsilon));
}
test "math.log10_64" {
const epsilon = 0.000001;
testing.expect(math.approxEqAbs(f64, log10_64(0.2), -0.698970, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(0.8923), -0.049489, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(1.5), 0.176091, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(37.45), 1.573452, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(89.123), 1.94999, epsilon));
testing.expect(math.approxEqAbs(f64, log10_64(123123.234375), 5.09034, epsilon));
}
test "math.log10_32.special" {
testing.expect(math.isPositiveInf(log10_32(math.inf(f32))));
testing.expect(math.isNegativeInf(log10_32(0.0)));
testing.expect(math.isNan(log10_32(-1.0)));
testing.expect(math.isNan(log10_32(math.nan(f32))));
}
test "math.log10_64.special" {
testing.expect(math.isPositiveInf(log10_64(math.inf(f64))));
testing.expect(math.isNegativeInf(log10_64(0.0)));
testing.expect(math.isNan(log10_64(-1.0)));
testing.expect(math.isNan(log10_64(math.nan(f64))));
}