mirror of
https://github.com/ziglang/zig.git
synced 2024-11-28 08:02:32 +00:00
4616af0ca4
* re-introduce `std.build.Target` which is distinct from `std.Target`. `std.build.Target` wraps `std.Target` so that it can be annotated as "the native target" or an explicitly specified target. * `std.Target.Os` is moved to `std.Target.Os.Tag`. The former is now a struct which has the tag as well as version range information. * `std.elf` gains some more ELF header constants. * `std.Target.parse` gains the ability to parse operating system version ranges as well as glibc version. * Added `std.Target.isGnuLibC()`. * self-hosted dynamic linker detection and glibc version detection. This also adds the improved logic using `/usr/bin/env` rather than invoking the system C compiler to find the dynamic linker when zig is statically linked. Related: #2084 Note: this `/usr/bin/env` code is work-in-progress. * `-target-glibc` CLI option is removed in favor of the new `-target` syntax. Example: `-target x86_64-linux-gnu.2.27` closes #1907
437 lines
14 KiB
Zig
437 lines
14 KiB
Zig
const std = @import("std.zig");
|
|
const builtin = @import("builtin");
|
|
const testing = std.testing;
|
|
const SpinLock = std.SpinLock;
|
|
const assert = std.debug.assert;
|
|
const c = std.c;
|
|
const os = std.os;
|
|
const time = std.time;
|
|
const linux = os.linux;
|
|
const windows = os.windows;
|
|
|
|
/// A resource object which supports blocking until signaled.
|
|
/// Once finished, the `deinit()` method should be called for correctness.
|
|
pub const ResetEvent = struct {
|
|
os_event: OsEvent,
|
|
|
|
pub const OsEvent = if (builtin.single_threaded)
|
|
DebugEvent
|
|
else if (builtin.link_libc and builtin.os.tag != .windows and builtin.os.tag != .linux)
|
|
PosixEvent
|
|
else
|
|
AtomicEvent;
|
|
|
|
pub fn init() ResetEvent {
|
|
return ResetEvent{ .os_event = OsEvent.init() };
|
|
}
|
|
|
|
pub fn deinit(self: *ResetEvent) void {
|
|
self.os_event.deinit();
|
|
}
|
|
|
|
/// Returns whether or not the event is currenetly set
|
|
pub fn isSet(self: *ResetEvent) bool {
|
|
return self.os_event.isSet();
|
|
}
|
|
|
|
/// Sets the event if not already set and
|
|
/// wakes up all the threads waiting on the event.
|
|
pub fn set(self: *ResetEvent) void {
|
|
return self.os_event.set();
|
|
}
|
|
|
|
/// Resets the event to its original, unset state.
|
|
pub fn reset(self: *ResetEvent) void {
|
|
return self.os_event.reset();
|
|
}
|
|
|
|
/// Wait for the event to be set by blocking the current thread.
|
|
pub fn wait(self: *ResetEvent) void {
|
|
return self.os_event.wait(null) catch unreachable;
|
|
}
|
|
|
|
/// Wait for the event to be set by blocking the current thread.
|
|
/// A timeout in nanoseconds can be provided as a hint for how
|
|
/// long the thread should block on the unset event before throwind error.TimedOut.
|
|
pub fn timedWait(self: *ResetEvent, timeout_ns: u64) !void {
|
|
return self.os_event.wait(timeout_ns);
|
|
}
|
|
};
|
|
|
|
const DebugEvent = struct {
|
|
is_set: bool,
|
|
|
|
fn init() DebugEvent {
|
|
return DebugEvent{ .is_set = false };
|
|
}
|
|
|
|
fn deinit(self: *DebugEvent) void {
|
|
self.* = undefined;
|
|
}
|
|
|
|
fn isSet(self: *DebugEvent) bool {
|
|
return self.is_set;
|
|
}
|
|
|
|
fn reset(self: *DebugEvent) void {
|
|
self.is_set = false;
|
|
}
|
|
|
|
fn set(self: *DebugEvent) void {
|
|
self.is_set = true;
|
|
}
|
|
|
|
fn wait(self: *DebugEvent, timeout: ?u64) !void {
|
|
if (self.is_set)
|
|
return;
|
|
if (timeout != null)
|
|
return error.TimedOut;
|
|
@panic("deadlock detected");
|
|
}
|
|
};
|
|
|
|
const PosixEvent = struct {
|
|
is_set: bool,
|
|
cond: c.pthread_cond_t,
|
|
mutex: c.pthread_mutex_t,
|
|
|
|
fn init() PosixEvent {
|
|
return PosixEvent{
|
|
.is_set = false,
|
|
.cond = c.PTHREAD_COND_INITIALIZER,
|
|
.mutex = c.PTHREAD_MUTEX_INITIALIZER,
|
|
};
|
|
}
|
|
|
|
fn deinit(self: *PosixEvent) void {
|
|
// on dragonfly, *destroy() functions can return EINVAL
|
|
// for statically initialized pthread structures
|
|
const err = if (builtin.os.tag == .dragonfly) os.EINVAL else 0;
|
|
|
|
const retm = c.pthread_mutex_destroy(&self.mutex);
|
|
assert(retm == 0 or retm == err);
|
|
const retc = c.pthread_cond_destroy(&self.cond);
|
|
assert(retc == 0 or retc == err);
|
|
}
|
|
|
|
fn isSet(self: *PosixEvent) bool {
|
|
assert(c.pthread_mutex_lock(&self.mutex) == 0);
|
|
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
|
|
|
|
return self.is_set;
|
|
}
|
|
|
|
fn reset(self: *PosixEvent) void {
|
|
assert(c.pthread_mutex_lock(&self.mutex) == 0);
|
|
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
|
|
|
|
self.is_set = false;
|
|
}
|
|
|
|
fn set(self: *PosixEvent) void {
|
|
assert(c.pthread_mutex_lock(&self.mutex) == 0);
|
|
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
|
|
|
|
if (!self.is_set) {
|
|
self.is_set = true;
|
|
assert(c.pthread_cond_broadcast(&self.cond) == 0);
|
|
}
|
|
}
|
|
|
|
fn wait(self: *PosixEvent, timeout: ?u64) !void {
|
|
assert(c.pthread_mutex_lock(&self.mutex) == 0);
|
|
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
|
|
|
|
// quick guard before possibly calling time syscalls below
|
|
if (self.is_set)
|
|
return;
|
|
|
|
var ts: os.timespec = undefined;
|
|
if (timeout) |timeout_ns| {
|
|
var timeout_abs = timeout_ns;
|
|
if (comptime std.Target.current.isDarwin()) {
|
|
var tv: os.darwin.timeval = undefined;
|
|
assert(os.darwin.gettimeofday(&tv, null) == 0);
|
|
timeout_abs += @intCast(u64, tv.tv_sec) * time.second;
|
|
timeout_abs += @intCast(u64, tv.tv_usec) * time.microsecond;
|
|
} else {
|
|
os.clock_gettime(os.CLOCK_REALTIME, &ts) catch unreachable;
|
|
timeout_abs += @intCast(u64, ts.tv_sec) * time.second;
|
|
timeout_abs += @intCast(u64, ts.tv_nsec);
|
|
}
|
|
ts.tv_sec = @intCast(@TypeOf(ts.tv_sec), @divFloor(timeout_abs, time.second));
|
|
ts.tv_nsec = @intCast(@TypeOf(ts.tv_nsec), @mod(timeout_abs, time.second));
|
|
}
|
|
|
|
while (!self.is_set) {
|
|
const rc = switch (timeout == null) {
|
|
true => c.pthread_cond_wait(&self.cond, &self.mutex),
|
|
else => c.pthread_cond_timedwait(&self.cond, &self.mutex, &ts),
|
|
};
|
|
switch (rc) {
|
|
0 => {},
|
|
os.ETIMEDOUT => return error.TimedOut,
|
|
os.EINVAL => unreachable,
|
|
os.EPERM => unreachable,
|
|
else => unreachable,
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
const AtomicEvent = struct {
|
|
waiters: u32,
|
|
|
|
const WAKE = 1 << 0;
|
|
const WAIT = 1 << 1;
|
|
|
|
fn init() AtomicEvent {
|
|
return AtomicEvent{ .waiters = 0 };
|
|
}
|
|
|
|
fn deinit(self: *AtomicEvent) void {
|
|
self.* = undefined;
|
|
}
|
|
|
|
fn isSet(self: *const AtomicEvent) bool {
|
|
return @atomicLoad(u32, &self.waiters, .Acquire) == WAKE;
|
|
}
|
|
|
|
fn reset(self: *AtomicEvent) void {
|
|
@atomicStore(u32, &self.waiters, 0, .Monotonic);
|
|
}
|
|
|
|
fn set(self: *AtomicEvent) void {
|
|
const waiters = @atomicRmw(u32, &self.waiters, .Xchg, WAKE, .Release);
|
|
if (waiters >= WAIT) {
|
|
return Futex.wake(&self.waiters, waiters >> 1);
|
|
}
|
|
}
|
|
|
|
fn wait(self: *AtomicEvent, timeout: ?u64) !void {
|
|
var waiters = @atomicLoad(u32, &self.waiters, .Acquire);
|
|
while (waiters != WAKE) {
|
|
waiters = @cmpxchgWeak(u32, &self.waiters, waiters, waiters + WAIT, .Acquire, .Acquire) orelse return Futex.wait(&self.waiters, timeout);
|
|
}
|
|
}
|
|
|
|
pub const Futex = switch (builtin.os.tag) {
|
|
.windows => WindowsFutex,
|
|
.linux => LinuxFutex,
|
|
else => SpinFutex,
|
|
};
|
|
|
|
const SpinFutex = struct {
|
|
fn wake(waiters: *u32, wake_count: u32) void {}
|
|
|
|
fn wait(waiters: *u32, timeout: ?u64) !void {
|
|
// TODO: handle platforms where a monotonic timer isnt available
|
|
var timer: time.Timer = undefined;
|
|
if (timeout != null)
|
|
timer = time.Timer.start() catch unreachable;
|
|
|
|
while (@atomicLoad(u32, waiters, .Acquire) != WAKE) {
|
|
SpinLock.yield();
|
|
if (timeout) |timeout_ns| {
|
|
if (timer.read() >= timeout_ns)
|
|
return error.TimedOut;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
const LinuxFutex = struct {
|
|
fn wake(waiters: *u32, wake_count: u32) void {
|
|
const waiting = std.math.maxInt(i32); // wake_count
|
|
const ptr = @ptrCast(*const i32, waiters);
|
|
const rc = linux.futex_wake(ptr, linux.FUTEX_WAKE | linux.FUTEX_PRIVATE_FLAG, waiting);
|
|
assert(linux.getErrno(rc) == 0);
|
|
}
|
|
|
|
fn wait(waiters: *u32, timeout: ?u64) !void {
|
|
var ts: linux.timespec = undefined;
|
|
var ts_ptr: ?*linux.timespec = null;
|
|
if (timeout) |timeout_ns| {
|
|
ts_ptr = &ts;
|
|
ts.tv_sec = @intCast(isize, timeout_ns / time.ns_per_s);
|
|
ts.tv_nsec = @intCast(isize, timeout_ns % time.ns_per_s);
|
|
}
|
|
|
|
while (true) {
|
|
const waiting = @atomicLoad(u32, waiters, .Acquire);
|
|
if (waiting == WAKE)
|
|
return;
|
|
const expected = @intCast(i32, waiting);
|
|
const ptr = @ptrCast(*const i32, waiters);
|
|
const rc = linux.futex_wait(ptr, linux.FUTEX_WAIT | linux.FUTEX_PRIVATE_FLAG, expected, ts_ptr);
|
|
switch (linux.getErrno(rc)) {
|
|
0 => continue,
|
|
os.ETIMEDOUT => return error.TimedOut,
|
|
os.EINTR => continue,
|
|
os.EAGAIN => return,
|
|
else => unreachable,
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
const WindowsFutex = struct {
|
|
pub fn wake(waiters: *u32, wake_count: u32) void {
|
|
const handle = getEventHandle() orelse return SpinFutex.wake(waiters, wake_count);
|
|
const key = @ptrCast(*const c_void, waiters);
|
|
|
|
var waiting = wake_count;
|
|
while (waiting != 0) : (waiting -= 1) {
|
|
const rc = windows.ntdll.NtReleaseKeyedEvent(handle, key, windows.FALSE, null);
|
|
assert(rc == .SUCCESS);
|
|
}
|
|
}
|
|
|
|
pub fn wait(waiters: *u32, timeout: ?u64) !void {
|
|
const handle = getEventHandle() orelse return SpinFutex.wait(waiters, timeout);
|
|
const key = @ptrCast(*const c_void, waiters);
|
|
|
|
// NT uses timeouts in units of 100ns with negative value being relative
|
|
var timeout_ptr: ?*windows.LARGE_INTEGER = null;
|
|
var timeout_value: windows.LARGE_INTEGER = undefined;
|
|
if (timeout) |timeout_ns| {
|
|
timeout_ptr = &timeout_value;
|
|
timeout_value = -@intCast(windows.LARGE_INTEGER, timeout_ns / 100);
|
|
}
|
|
|
|
// NtWaitForKeyedEvent doesnt have spurious wake-ups
|
|
var rc = windows.ntdll.NtWaitForKeyedEvent(handle, key, windows.FALSE, timeout_ptr);
|
|
switch (rc) {
|
|
.TIMEOUT => {
|
|
// update the wait count to signal that we're not waiting anymore.
|
|
// if the .set() thread already observed that we are, perform a
|
|
// matching NtWaitForKeyedEvent so that the .set() thread doesn't
|
|
// deadlock trying to run NtReleaseKeyedEvent above.
|
|
var waiting = @atomicLoad(u32, waiters, .Monotonic);
|
|
while (true) {
|
|
if (waiting == WAKE) {
|
|
rc = windows.ntdll.NtWaitForKeyedEvent(handle, key, windows.FALSE, null);
|
|
assert(rc == .WAIT_0);
|
|
break;
|
|
} else {
|
|
waiting = @cmpxchgWeak(u32, waiters, waiting, waiting - WAIT, .Acquire, .Monotonic) orelse break;
|
|
continue;
|
|
}
|
|
}
|
|
return error.TimedOut;
|
|
},
|
|
.WAIT_0 => {},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
|
|
var event_handle: usize = EMPTY;
|
|
const EMPTY = ~@as(usize, 0);
|
|
const LOADING = EMPTY - 1;
|
|
|
|
pub fn getEventHandle() ?windows.HANDLE {
|
|
var handle = @atomicLoad(usize, &event_handle, .Monotonic);
|
|
while (true) {
|
|
switch (handle) {
|
|
EMPTY => handle = @cmpxchgWeak(usize, &event_handle, EMPTY, LOADING, .Acquire, .Monotonic) orelse {
|
|
const handle_ptr = @ptrCast(*windows.HANDLE, &handle);
|
|
const access_mask = windows.GENERIC_READ | windows.GENERIC_WRITE;
|
|
if (windows.ntdll.NtCreateKeyedEvent(handle_ptr, access_mask, null, 0) != .SUCCESS)
|
|
handle = 0;
|
|
@atomicStore(usize, &event_handle, handle, .Monotonic);
|
|
return @intToPtr(?windows.HANDLE, handle);
|
|
},
|
|
LOADING => {
|
|
SpinLock.yield();
|
|
handle = @atomicLoad(usize, &event_handle, .Monotonic);
|
|
},
|
|
else => {
|
|
return @intToPtr(?windows.HANDLE, handle);
|
|
},
|
|
}
|
|
}
|
|
}
|
|
};
|
|
};
|
|
|
|
test "std.ResetEvent" {
|
|
var event = ResetEvent.init();
|
|
defer event.deinit();
|
|
|
|
// test event setting
|
|
testing.expect(event.isSet() == false);
|
|
event.set();
|
|
testing.expect(event.isSet() == true);
|
|
|
|
// test event resetting
|
|
event.reset();
|
|
testing.expect(event.isSet() == false);
|
|
|
|
// test event waiting (non-blocking)
|
|
event.set();
|
|
event.wait();
|
|
try event.timedWait(1);
|
|
|
|
// test cross-thread signaling
|
|
if (builtin.single_threaded)
|
|
return;
|
|
|
|
const Context = struct {
|
|
const Self = @This();
|
|
|
|
value: u128,
|
|
in: ResetEvent,
|
|
out: ResetEvent,
|
|
|
|
fn init() Self {
|
|
return Self{
|
|
.value = 0,
|
|
.in = ResetEvent.init(),
|
|
.out = ResetEvent.init(),
|
|
};
|
|
}
|
|
|
|
fn deinit(self: *Self) void {
|
|
self.in.deinit();
|
|
self.out.deinit();
|
|
self.* = undefined;
|
|
}
|
|
|
|
fn sender(self: *Self) void {
|
|
// update value and signal input
|
|
testing.expect(self.value == 0);
|
|
self.value = 1;
|
|
self.in.set();
|
|
|
|
// wait for receiver to update value and signal output
|
|
self.out.wait();
|
|
testing.expect(self.value == 2);
|
|
|
|
// update value and signal final input
|
|
self.value = 3;
|
|
self.in.set();
|
|
}
|
|
|
|
fn receiver(self: *Self) void {
|
|
// wait for sender to update value and signal input
|
|
self.in.wait();
|
|
assert(self.value == 1);
|
|
|
|
// update value and signal output
|
|
self.in.reset();
|
|
self.value = 2;
|
|
self.out.set();
|
|
|
|
// wait for sender to update value and signal final input
|
|
self.in.wait();
|
|
assert(self.value == 3);
|
|
}
|
|
};
|
|
|
|
var context = Context.init();
|
|
defer context.deinit();
|
|
const receiver = try std.Thread.spawn(&context, Context.receiver);
|
|
defer receiver.wait();
|
|
context.sender();
|
|
}
|