zig/c_headers/__clang_cuda_complex_builtins.h
2017-06-16 14:35:00 -04:00

204 lines
8.3 KiB
C++

/*===-- __clang_cuda_complex_builtins - CUDA impls of runtime complex fns ---===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_COMPLEX_BUILTINS
#define __CLANG_CUDA_COMPLEX_BUILTINS
// This header defines __muldc3, __mulsc3, __divdc3, and __divsc3. These are
// libgcc functions that clang assumes are available when compiling c99 complex
// operations. (These implementations come from libc++, and have been modified
// to work with CUDA.)
extern "C" inline __device__ double _Complex __muldc3(double __a, double __b,
double __c, double __d) {
double __ac = __a * __c;
double __bd = __b * __d;
double __ad = __a * __d;
double __bc = __b * __c;
double _Complex z;
__real__(z) = __ac - __bd;
__imag__(z) = __ad + __bc;
if (std::isnan(__real__(z)) && std::isnan(__imag__(z))) {
int __recalc = 0;
if (std::isinf(__a) || std::isinf(__b)) {
__a = std::copysign(std::isinf(__a) ? 1 : 0, __a);
__b = std::copysign(std::isinf(__b) ? 1 : 0, __b);
if (std::isnan(__c))
__c = std::copysign(0, __c);
if (std::isnan(__d))
__d = std::copysign(0, __d);
__recalc = 1;
}
if (std::isinf(__c) || std::isinf(__d)) {
__c = std::copysign(std::isinf(__c) ? 1 : 0, __c);
__d = std::copysign(std::isinf(__d) ? 1 : 0, __d);
if (std::isnan(__a))
__a = std::copysign(0, __a);
if (std::isnan(__b))
__b = std::copysign(0, __b);
__recalc = 1;
}
if (!__recalc && (std::isinf(__ac) || std::isinf(__bd) ||
std::isinf(__ad) || std::isinf(__bc))) {
if (std::isnan(__a))
__a = std::copysign(0, __a);
if (std::isnan(__b))
__b = std::copysign(0, __b);
if (std::isnan(__c))
__c = std::copysign(0, __c);
if (std::isnan(__d))
__d = std::copysign(0, __d);
__recalc = 1;
}
if (__recalc) {
// Can't use std::numeric_limits<double>::infinity() -- that doesn't have
// a device overload (and isn't constexpr before C++11, naturally).
__real__(z) = __builtin_huge_valf() * (__a * __c - __b * __d);
__imag__(z) = __builtin_huge_valf() * (__a * __d + __b * __c);
}
}
return z;
}
extern "C" inline __device__ float _Complex __mulsc3(float __a, float __b,
float __c, float __d) {
float __ac = __a * __c;
float __bd = __b * __d;
float __ad = __a * __d;
float __bc = __b * __c;
float _Complex z;
__real__(z) = __ac - __bd;
__imag__(z) = __ad + __bc;
if (std::isnan(__real__(z)) && std::isnan(__imag__(z))) {
int __recalc = 0;
if (std::isinf(__a) || std::isinf(__b)) {
__a = std::copysign(std::isinf(__a) ? 1 : 0, __a);
__b = std::copysign(std::isinf(__b) ? 1 : 0, __b);
if (std::isnan(__c))
__c = std::copysign(0, __c);
if (std::isnan(__d))
__d = std::copysign(0, __d);
__recalc = 1;
}
if (std::isinf(__c) || std::isinf(__d)) {
__c = std::copysign(std::isinf(__c) ? 1 : 0, __c);
__d = std::copysign(std::isinf(__d) ? 1 : 0, __d);
if (std::isnan(__a))
__a = std::copysign(0, __a);
if (std::isnan(__b))
__b = std::copysign(0, __b);
__recalc = 1;
}
if (!__recalc && (std::isinf(__ac) || std::isinf(__bd) ||
std::isinf(__ad) || std::isinf(__bc))) {
if (std::isnan(__a))
__a = std::copysign(0, __a);
if (std::isnan(__b))
__b = std::copysign(0, __b);
if (std::isnan(__c))
__c = std::copysign(0, __c);
if (std::isnan(__d))
__d = std::copysign(0, __d);
__recalc = 1;
}
if (__recalc) {
__real__(z) = __builtin_huge_valf() * (__a * __c - __b * __d);
__imag__(z) = __builtin_huge_valf() * (__a * __d + __b * __c);
}
}
return z;
}
extern "C" inline __device__ double _Complex __divdc3(double __a, double __b,
double __c, double __d) {
int __ilogbw = 0;
// Can't use std::max, because that's defined in <algorithm>, and we don't
// want to pull that in for every compile. The CUDA headers define
// ::max(float, float) and ::max(double, double), which is sufficient for us.
double __logbw = std::logb(max(std::abs(__c), std::abs(__d)));
if (std::isfinite(__logbw)) {
__ilogbw = (int)__logbw;
__c = std::scalbn(__c, -__ilogbw);
__d = std::scalbn(__d, -__ilogbw);
}
double __denom = __c * __c + __d * __d;
double _Complex z;
__real__(z) = std::scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
__imag__(z) = std::scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
if (std::isnan(__real__(z)) && std::isnan(__imag__(z))) {
if ((__denom == 0.0) && (!std::isnan(__a) || !std::isnan(__b))) {
__real__(z) = std::copysign(__builtin_huge_valf(), __c) * __a;
__imag__(z) = std::copysign(__builtin_huge_valf(), __c) * __b;
} else if ((std::isinf(__a) || std::isinf(__b)) && std::isfinite(__c) &&
std::isfinite(__d)) {
__a = std::copysign(std::isinf(__a) ? 1.0 : 0.0, __a);
__b = std::copysign(std::isinf(__b) ? 1.0 : 0.0, __b);
__real__(z) = __builtin_huge_valf() * (__a * __c + __b * __d);
__imag__(z) = __builtin_huge_valf() * (__b * __c - __a * __d);
} else if (std::isinf(__logbw) && __logbw > 0.0 && std::isfinite(__a) &&
std::isfinite(__b)) {
__c = std::copysign(std::isinf(__c) ? 1.0 : 0.0, __c);
__d = std::copysign(std::isinf(__d) ? 1.0 : 0.0, __d);
__real__(z) = 0.0 * (__a * __c + __b * __d);
__imag__(z) = 0.0 * (__b * __c - __a * __d);
}
}
return z;
}
extern "C" inline __device__ float _Complex __divsc3(float __a, float __b,
float __c, float __d) {
int __ilogbw = 0;
float __logbw = std::logb(max(std::abs(__c), std::abs(__d)));
if (std::isfinite(__logbw)) {
__ilogbw = (int)__logbw;
__c = std::scalbn(__c, -__ilogbw);
__d = std::scalbn(__d, -__ilogbw);
}
float __denom = __c * __c + __d * __d;
float _Complex z;
__real__(z) = std::scalbn((__a * __c + __b * __d) / __denom, -__ilogbw);
__imag__(z) = std::scalbn((__b * __c - __a * __d) / __denom, -__ilogbw);
if (std::isnan(__real__(z)) && std::isnan(__imag__(z))) {
if ((__denom == 0) && (!std::isnan(__a) || !std::isnan(__b))) {
__real__(z) = std::copysign(__builtin_huge_valf(), __c) * __a;
__imag__(z) = std::copysign(__builtin_huge_valf(), __c) * __b;
} else if ((std::isinf(__a) || std::isinf(__b)) && std::isfinite(__c) &&
std::isfinite(__d)) {
__a = std::copysign(std::isinf(__a) ? 1 : 0, __a);
__b = std::copysign(std::isinf(__b) ? 1 : 0, __b);
__real__(z) = __builtin_huge_valf() * (__a * __c + __b * __d);
__imag__(z) = __builtin_huge_valf() * (__b * __c - __a * __d);
} else if (std::isinf(__logbw) && __logbw > 0 && std::isfinite(__a) &&
std::isfinite(__b)) {
__c = std::copysign(std::isinf(__c) ? 1 : 0, __c);
__d = std::copysign(std::isinf(__d) ? 1 : 0, __d);
__real__(z) = 0 * (__a * __c + __b * __d);
__imag__(z) = 0 * (__b * __c - __a * __d);
}
}
return z;
}
#endif // __CLANG_CUDA_COMPLEX_BUILTINS