mirror of
https://github.com/ziglang/zig.git
synced 2024-11-30 17:12:31 +00:00
f26dda2117
Most of this migration was performed automatically with `zig fmt`. There were a few exceptions which I had to manually fix: * `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten * `@truncate`'s fixup is incorrect for vectors * Test cases are not formatted, and their error locations change
475 lines
20 KiB
Zig
475 lines
20 KiB
Zig
//! The engines provided here should be initialized from an external source.
|
|
//! For a thread-local cryptographically secure pseudo random number generator,
|
|
//! use `std.crypto.random`.
|
|
//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
|
|
//! be faster and use substantially less stack space.
|
|
//!
|
|
//! TODO(tiehuis): Benchmark these against other reference implementations.
|
|
|
|
const std = @import("std.zig");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const mem = std.mem;
|
|
const math = std.math;
|
|
const maxInt = std.math.maxInt;
|
|
|
|
/// Fast unbiased random numbers.
|
|
pub const DefaultPrng = Xoshiro256;
|
|
|
|
/// Cryptographically secure random numbers.
|
|
pub const DefaultCsprng = ChaCha;
|
|
|
|
pub const Ascon = @import("rand/Ascon.zig");
|
|
pub const ChaCha = @import("rand/ChaCha.zig");
|
|
|
|
pub const Isaac64 = @import("rand/Isaac64.zig");
|
|
pub const Pcg = @import("rand/Pcg.zig");
|
|
pub const Xoroshiro128 = @import("rand/Xoroshiro128.zig");
|
|
pub const Xoshiro256 = @import("rand/Xoshiro256.zig");
|
|
pub const Sfc64 = @import("rand/Sfc64.zig");
|
|
pub const RomuTrio = @import("rand/RomuTrio.zig");
|
|
pub const ziggurat = @import("rand/ziggurat.zig");
|
|
|
|
pub const Random = struct {
|
|
ptr: *anyopaque,
|
|
fillFn: *const fn (ptr: *anyopaque, buf: []u8) void,
|
|
|
|
pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
|
|
const Ptr = @TypeOf(pointer);
|
|
assert(@typeInfo(Ptr) == .Pointer); // Must be a pointer
|
|
assert(@typeInfo(Ptr).Pointer.size == .One); // Must be a single-item pointer
|
|
assert(@typeInfo(@typeInfo(Ptr).Pointer.child) == .Struct); // Must point to a struct
|
|
const gen = struct {
|
|
fn fill(ptr: *anyopaque, buf: []u8) void {
|
|
const self: Ptr = @ptrCast(@alignCast(ptr));
|
|
fillFn(self, buf);
|
|
}
|
|
};
|
|
|
|
return .{
|
|
.ptr = pointer,
|
|
.fillFn = gen.fill,
|
|
};
|
|
}
|
|
|
|
/// Read random bytes into the specified buffer until full.
|
|
pub fn bytes(r: Random, buf: []u8) void {
|
|
r.fillFn(r.ptr, buf);
|
|
}
|
|
|
|
pub fn boolean(r: Random) bool {
|
|
return r.int(u1) != 0;
|
|
}
|
|
|
|
/// Returns a random value from an enum, evenly distributed.
|
|
///
|
|
/// Note that this will not yield consistent results across all targets
|
|
/// due to dependence on the representation of `usize` as an index.
|
|
/// See `enumValueWithIndex` for further commentary.
|
|
pub inline fn enumValue(r: Random, comptime EnumType: type) EnumType {
|
|
return r.enumValueWithIndex(EnumType, usize);
|
|
}
|
|
|
|
/// Returns a random value from an enum, evenly distributed.
|
|
///
|
|
/// An index into an array of all named values is generated using the
|
|
/// specified `Index` type to determine the return value.
|
|
/// This allows for results to be independent of `usize` representation.
|
|
///
|
|
/// Prefer `enumValue` if this isn't important.
|
|
///
|
|
/// See `uintLessThan`, which this function uses in most cases,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn enumValueWithIndex(r: Random, comptime EnumType: type, comptime Index: type) EnumType {
|
|
comptime assert(@typeInfo(EnumType) == .Enum);
|
|
|
|
// We won't use int -> enum casting because enum elements can have
|
|
// arbitrary values. Instead we'll randomly pick one of the type's values.
|
|
const values = comptime std.enums.values(EnumType);
|
|
comptime assert(values.len > 0); // can't return anything
|
|
comptime assert(maxInt(Index) >= values.len - 1); // can't access all values
|
|
comptime if (values.len == 1) return values[0];
|
|
|
|
const index = if (comptime values.len - 1 == maxInt(Index))
|
|
r.int(Index)
|
|
else
|
|
r.uintLessThan(Index, values.len);
|
|
|
|
const MinInt = MinArrayIndex(Index);
|
|
return values[@as(MinInt, @intCast(index))];
|
|
}
|
|
|
|
/// Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
|
|
/// `i` is evenly distributed.
|
|
pub fn int(r: Random, comptime T: type) T {
|
|
const bits = @typeInfo(T).Int.bits;
|
|
const UnsignedT = std.meta.Int(.unsigned, bits);
|
|
const ByteAlignedT = std.meta.Int(.unsigned, @divTrunc(bits + 7, 8) * 8);
|
|
|
|
var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined;
|
|
r.bytes(rand_bytes[0..]);
|
|
|
|
// use LE instead of native endian for better portability maybe?
|
|
// TODO: endian portability is pointless if the underlying prng isn't endian portable.
|
|
// TODO: document the endian portability of this library.
|
|
const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, &rand_bytes);
|
|
const unsigned_result = @as(UnsignedT, @truncate(byte_aligned_result));
|
|
return @as(T, @bitCast(unsigned_result));
|
|
}
|
|
|
|
/// Constant-time implementation off `uintLessThan`.
|
|
/// The results of this function may be biased.
|
|
pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
|
|
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
const bits = @typeInfo(T).Int.bits;
|
|
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
|
|
assert(0 < less_than);
|
|
if (bits <= 32) {
|
|
return @as(T, @intCast(limitRangeBiased(u32, r.int(u32), less_than)));
|
|
} else {
|
|
return @as(T, @intCast(limitRangeBiased(u64, r.int(u64), less_than)));
|
|
}
|
|
}
|
|
|
|
/// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
|
|
/// This function assumes that the underlying `fillFn` produces evenly distributed values.
|
|
/// Within this assumption, the runtime of this function is exponentially distributed.
|
|
/// If `fillFn` were backed by a true random generator,
|
|
/// the runtime of this function would technically be unbounded.
|
|
/// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
|
|
/// this function is guaranteed to return.
|
|
/// If you need deterministic runtime bounds, use `uintLessThanBiased`.
|
|
pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
|
|
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
const bits = @typeInfo(T).Int.bits;
|
|
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
|
|
assert(0 < less_than);
|
|
// Small is typically u32
|
|
const small_bits = @divTrunc(bits + 31, 32) * 32;
|
|
const Small = std.meta.Int(.unsigned, small_bits);
|
|
// Large is typically u64
|
|
const Large = std.meta.Int(.unsigned, small_bits * 2);
|
|
|
|
// adapted from:
|
|
// http://www.pcg-random.org/posts/bounded-rands.html
|
|
// "Lemire's (with an extra tweak from me)"
|
|
var x: Small = r.int(Small);
|
|
var m: Large = @as(Large, x) * @as(Large, less_than);
|
|
var l: Small = @as(Small, @truncate(m));
|
|
if (l < less_than) {
|
|
var t: Small = -%less_than;
|
|
|
|
if (t >= less_than) {
|
|
t -= less_than;
|
|
if (t >= less_than) {
|
|
t %= less_than;
|
|
}
|
|
}
|
|
while (l < t) {
|
|
x = r.int(Small);
|
|
m = @as(Large, x) * @as(Large, less_than);
|
|
l = @as(Small, @truncate(m));
|
|
}
|
|
}
|
|
return @as(T, @intCast(m >> small_bits));
|
|
}
|
|
|
|
/// Constant-time implementation off `uintAtMost`.
|
|
/// The results of this function may be biased.
|
|
pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
|
|
assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
if (at_most == maxInt(T)) {
|
|
// have the full range
|
|
return r.int(T);
|
|
}
|
|
return r.uintLessThanBiased(T, at_most + 1);
|
|
}
|
|
|
|
/// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
|
|
/// See `uintLessThan`, which this function uses in most cases,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
|
|
assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
if (at_most == maxInt(T)) {
|
|
// have the full range
|
|
return r.int(T);
|
|
}
|
|
return r.uintLessThan(T, at_most + 1);
|
|
}
|
|
|
|
/// Constant-time implementation off `intRangeLessThan`.
|
|
/// The results of this function may be biased.
|
|
pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
|
|
assert(at_least < less_than);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @as(UnsignedT, @bitCast(at_least));
|
|
const hi = @as(UnsignedT, @bitCast(less_than));
|
|
const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
|
|
return @as(T, @bitCast(result));
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintLessThanBiased(T, less_than - at_least);
|
|
}
|
|
}
|
|
|
|
/// Returns an evenly distributed random integer `at_least <= i < less_than`.
|
|
/// See `uintLessThan`, which this function uses in most cases,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
|
|
assert(at_least < less_than);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @as(UnsignedT, @bitCast(at_least));
|
|
const hi = @as(UnsignedT, @bitCast(less_than));
|
|
const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
|
|
return @as(T, @bitCast(result));
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintLessThan(T, less_than - at_least);
|
|
}
|
|
}
|
|
|
|
/// Constant-time implementation off `intRangeAtMostBiased`.
|
|
/// The results of this function may be biased.
|
|
pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
|
|
assert(at_least <= at_most);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @as(UnsignedT, @bitCast(at_least));
|
|
const hi = @as(UnsignedT, @bitCast(at_most));
|
|
const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
|
|
return @as(T, @bitCast(result));
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintAtMostBiased(T, at_most - at_least);
|
|
}
|
|
}
|
|
|
|
/// Returns an evenly distributed random integer `at_least <= i <= at_most`.
|
|
/// See `uintLessThan`, which this function uses in most cases,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
|
|
assert(at_least <= at_most);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @as(UnsignedT, @bitCast(at_least));
|
|
const hi = @as(UnsignedT, @bitCast(at_most));
|
|
const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
|
|
return @as(T, @bitCast(result));
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintAtMost(T, at_most - at_least);
|
|
}
|
|
}
|
|
|
|
/// Return a floating point value evenly distributed in the range [0, 1).
|
|
pub fn float(r: Random, comptime T: type) T {
|
|
// Generate a uniformly random value for the mantissa.
|
|
// Then generate an exponentially biased random value for the exponent.
|
|
// This covers every possible value in the range.
|
|
switch (T) {
|
|
f32 => {
|
|
// Use 23 random bits for the mantissa, and the rest for the exponent.
|
|
// If all 41 bits are zero, generate additional random bits, until a
|
|
// set bit is found, or 126 bits have been generated.
|
|
const rand = r.int(u64);
|
|
var rand_lz = @clz(rand);
|
|
if (rand_lz >= 41) {
|
|
// TODO: when #5177 or #489 is implemented,
|
|
// tell the compiler it is unlikely (1/2^41) to reach this point.
|
|
// (Same for the if branch and the f64 calculations below.)
|
|
rand_lz = 41 + @clz(r.int(u64));
|
|
if (rand_lz == 41 + 64) {
|
|
// It is astronomically unlikely to reach this point.
|
|
rand_lz += @clz(r.int(u32) | 0x7FF);
|
|
}
|
|
}
|
|
const mantissa = @as(u23, @truncate(rand));
|
|
const exponent = @as(u32, 126 - rand_lz) << 23;
|
|
return @as(f32, @bitCast(exponent | mantissa));
|
|
},
|
|
f64 => {
|
|
// Use 52 random bits for the mantissa, and the rest for the exponent.
|
|
// If all 12 bits are zero, generate additional random bits, until a
|
|
// set bit is found, or 1022 bits have been generated.
|
|
const rand = r.int(u64);
|
|
var rand_lz: u64 = @clz(rand);
|
|
if (rand_lz >= 12) {
|
|
rand_lz = 12;
|
|
while (true) {
|
|
// It is astronomically unlikely for this loop to execute more than once.
|
|
const addl_rand_lz = @clz(r.int(u64));
|
|
rand_lz += addl_rand_lz;
|
|
if (addl_rand_lz != 64) {
|
|
break;
|
|
}
|
|
if (rand_lz >= 1022) {
|
|
rand_lz = 1022;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
const mantissa = rand & 0xFFFFFFFFFFFFF;
|
|
const exponent = (1022 - rand_lz) << 52;
|
|
return @as(f64, @bitCast(exponent | mantissa));
|
|
},
|
|
else => @compileError("unknown floating point type"),
|
|
}
|
|
}
|
|
|
|
/// Return a floating point value normally distributed with mean = 0, stddev = 1.
|
|
///
|
|
/// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
|
|
pub fn floatNorm(r: Random, comptime T: type) T {
|
|
const value = ziggurat.next_f64(r, ziggurat.NormDist);
|
|
switch (T) {
|
|
f32 => return @as(f32, @floatCast(value)),
|
|
f64 => return value,
|
|
else => @compileError("unknown floating point type"),
|
|
}
|
|
}
|
|
|
|
/// Return an exponentially distributed float with a rate parameter of 1.
|
|
///
|
|
/// To use a different rate parameter, use: floatExp(...) / desiredRate.
|
|
pub fn floatExp(r: Random, comptime T: type) T {
|
|
const value = ziggurat.next_f64(r, ziggurat.ExpDist);
|
|
switch (T) {
|
|
f32 => return @as(f32, @floatCast(value)),
|
|
f64 => return value,
|
|
else => @compileError("unknown floating point type"),
|
|
}
|
|
}
|
|
|
|
/// Shuffle a slice into a random order.
|
|
///
|
|
/// Note that this will not yield consistent results across all targets
|
|
/// due to dependence on the representation of `usize` as an index.
|
|
/// See `shuffleWithIndex` for further commentary.
|
|
pub inline fn shuffle(r: Random, comptime T: type, buf: []T) void {
|
|
r.shuffleWithIndex(T, buf, usize);
|
|
}
|
|
|
|
/// Shuffle a slice into a random order, using an index of a
|
|
/// specified type to maintain distribution across targets.
|
|
/// Asserts the index type can represent `buf.len`.
|
|
///
|
|
/// Indexes into the slice are generated using the specified `Index`
|
|
/// type, which determines distribution properties. This allows for
|
|
/// results to be independent of `usize` representation.
|
|
///
|
|
/// Prefer `shuffle` if this isn't important.
|
|
///
|
|
/// See `intRangeLessThan`, which this function uses,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn shuffleWithIndex(r: Random, comptime T: type, buf: []T, comptime Index: type) void {
|
|
const MinInt = MinArrayIndex(Index);
|
|
if (buf.len < 2) {
|
|
return;
|
|
}
|
|
|
|
// `i <= j < max <= maxInt(MinInt)`
|
|
const max = @as(MinInt, @intCast(buf.len));
|
|
var i: MinInt = 0;
|
|
while (i < max - 1) : (i += 1) {
|
|
const j = @as(MinInt, @intCast(r.intRangeLessThan(Index, i, max)));
|
|
mem.swap(T, &buf[i], &buf[j]);
|
|
}
|
|
}
|
|
|
|
/// Randomly selects an index into `proportions`, where the likelihood of each
|
|
/// index is weighted by that proportion.
|
|
/// It is more likely for the index of the last proportion to be returned
|
|
/// than the index of the first proportion in the slice, and vice versa.
|
|
///
|
|
/// This is useful for selecting an item from a slice where weights are not equal.
|
|
/// `T` must be a numeric type capable of holding the sum of `proportions`.
|
|
pub fn weightedIndex(r: std.rand.Random, comptime T: type, proportions: []const T) usize {
|
|
// This implementation works by summing the proportions and picking a random
|
|
// point in [0, sum). We then loop over the proportions, accumulating
|
|
// until our accumulator is greater than the random point.
|
|
|
|
var sum: T = 0;
|
|
for (proportions) |v| {
|
|
sum += v;
|
|
}
|
|
|
|
const point = if (comptime std.meta.trait.isSignedInt(T))
|
|
r.intRangeLessThan(T, 0, sum)
|
|
else if (comptime std.meta.trait.isUnsignedInt(T))
|
|
r.uintLessThan(T, sum)
|
|
else if (comptime std.meta.trait.isFloat(T))
|
|
// take care that imprecision doesn't lead to a value slightly greater than sum
|
|
@min(r.float(T) * sum, sum - std.math.floatEps(T))
|
|
else
|
|
@compileError("weightedIndex does not support proportions of type " ++ @typeName(T));
|
|
|
|
std.debug.assert(point < sum);
|
|
|
|
var accumulator: T = 0;
|
|
for (proportions, 0..) |p, index| {
|
|
accumulator += p;
|
|
if (point < accumulator) return index;
|
|
}
|
|
|
|
unreachable;
|
|
}
|
|
|
|
/// Returns the smallest of `Index` and `usize`.
|
|
fn MinArrayIndex(comptime Index: type) type {
|
|
const index_info = @typeInfo(Index).Int;
|
|
assert(index_info.signedness == .unsigned);
|
|
return if (index_info.bits >= @typeInfo(usize).Int.bits) usize else Index;
|
|
}
|
|
};
|
|
|
|
/// Convert a random integer 0 <= random_int <= maxValue(T),
|
|
/// into an integer 0 <= result < less_than.
|
|
/// This function introduces a minor bias.
|
|
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
|
|
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
const bits = @typeInfo(T).Int.bits;
|
|
const T2 = std.meta.Int(.unsigned, bits * 2);
|
|
|
|
// adapted from:
|
|
// http://www.pcg-random.org/posts/bounded-rands.html
|
|
// "Integer Multiplication (Biased)"
|
|
var m: T2 = @as(T2, random_int) * @as(T2, less_than);
|
|
return @as(T, @intCast(m >> bits));
|
|
}
|
|
|
|
// Generator to extend 64-bit seed values into longer sequences.
|
|
//
|
|
// The number of cycles is thus limited to 64-bits regardless of the engine, but this
|
|
// is still plenty for practical purposes.
|
|
pub const SplitMix64 = struct {
|
|
s: u64,
|
|
|
|
pub fn init(seed: u64) SplitMix64 {
|
|
return SplitMix64{ .s = seed };
|
|
}
|
|
|
|
pub fn next(self: *SplitMix64) u64 {
|
|
self.s +%= 0x9e3779b97f4a7c15;
|
|
|
|
var z = self.s;
|
|
z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9;
|
|
z = (z ^ (z >> 27)) *% 0x94d049bb133111eb;
|
|
return z ^ (z >> 31);
|
|
}
|
|
};
|
|
|
|
test {
|
|
std.testing.refAllDecls(@This());
|
|
_ = @import("rand/test.zig");
|
|
}
|