zig/lib/std/hash/auto_hash.zig
Joris Hartog 5e40560367 Specify type in autoHash error message
This commit simply specifies the type which `autoHash` can't hash in the
compile error.

Closes #7970.
2021-03-21 23:07:02 +02:00

429 lines
14 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const meta = std.meta;
/// Describes how pointer types should be hashed.
pub const HashStrategy = enum {
/// Do not follow pointers, only hash their value.
Shallow,
/// Follow pointers, hash the pointee content.
/// Only dereferences one level, ie. it is changed into .Shallow when a
/// pointer type is encountered.
Deep,
/// Follow pointers, hash the pointee content.
/// Dereferences all pointers encountered.
/// Assumes no cycle.
DeepRecursive,
};
/// Helper function to hash a pointer and mutate the strategy if needed.
pub fn hashPointer(hasher: anytype, key: anytype, comptime strat: HashStrategy) void {
const info = @typeInfo(@TypeOf(key));
switch (info.Pointer.size) {
.One => switch (strat) {
.Shallow => hash(hasher, @ptrToInt(key), .Shallow),
.Deep => hash(hasher, key.*, .Shallow),
.DeepRecursive => hash(hasher, key.*, .DeepRecursive),
},
.Slice => switch (strat) {
.Shallow => {
hashPointer(hasher, key.ptr, .Shallow);
hash(hasher, key.len, .Shallow);
},
.Deep => hashArray(hasher, key, .Shallow),
.DeepRecursive => hashArray(hasher, key, .DeepRecursive),
},
.Many,
.C,
=> switch (strat) {
.Shallow => hash(hasher, @ptrToInt(key), .Shallow),
else => @compileError(
\\ unknown-length pointers and C pointers cannot be hashed deeply.
\\ Consider providing your own hash function.
),
},
}
}
/// Helper function to hash a set of contiguous objects, from an array or slice.
pub fn hashArray(hasher: anytype, key: anytype, comptime strat: HashStrategy) void {
switch (strat) {
.Shallow => {
for (key) |element| {
hash(hasher, element, .Shallow);
}
},
else => {
for (key) |element| {
hash(hasher, element, strat);
}
},
}
}
/// Provides generic hashing for any eligible type.
/// Strategy is provided to determine if pointers should be followed or not.
pub fn hash(hasher: anytype, key: anytype, comptime strat: HashStrategy) void {
const Key = @TypeOf(key);
if (strat == .Shallow and comptime meta.trait.hasUniqueRepresentation(Key)) {
@call(.{ .modifier = .always_inline }, hasher.update, .{mem.asBytes(&key)});
return;
}
switch (@typeInfo(Key)) {
.NoReturn,
.Opaque,
.Undefined,
.Void,
.Null,
.ComptimeFloat,
.ComptimeInt,
.Type,
.EnumLiteral,
.Frame,
.Float,
=> @compileError("unable to hash type " ++ @typeName(Key)),
// Help the optimizer see that hashing an int is easy by inlining!
// TODO Check if the situation is better after #561 is resolved.
.Int => {
if (comptime meta.trait.hasUniqueRepresentation(Key)) {
@call(.{ .modifier = .always_inline }, hasher.update, .{std.mem.asBytes(&key)});
} else {
// Take only the part containing the key value, the remaining
// bytes are undefined and must not be hashed!
const byte_size = comptime std.math.divCeil(comptime_int, @bitSizeOf(Key), 8) catch unreachable;
@call(.{ .modifier = .always_inline }, hasher.update, .{std.mem.asBytes(&key)[0..byte_size]});
}
},
.Bool => hash(hasher, @boolToInt(key), strat),
.Enum => hash(hasher, @enumToInt(key), strat),
.ErrorSet => hash(hasher, @errorToInt(key), strat),
.AnyFrame, .BoundFn, .Fn => hash(hasher, @ptrToInt(key), strat),
.Pointer => @call(.{ .modifier = .always_inline }, hashPointer, .{ hasher, key, strat }),
.Optional => if (key) |k| hash(hasher, k, strat),
.Array => hashArray(hasher, key, strat),
.Vector => |info| {
if (std.meta.bitCount(info.child) % 8 == 0) {
// If there's no unused bits in the child type, we can just hash
// this as an array of bytes.
hasher.update(mem.asBytes(&key));
} else {
// Otherwise, hash every element.
comptime var i = 0;
inline while (i < info.len) : (i += 1) {
hash(hasher, key[i], strat);
}
}
},
.Struct => |info| {
inline for (info.fields) |field| {
// We reuse the hash of the previous field as the seed for the
// next one so that they're dependant.
hash(hasher, @field(key, field.name), strat);
}
},
.Union => |info| {
if (info.tag_type) |tag_type| {
const tag = meta.activeTag(key);
const s = hash(hasher, tag, strat);
inline for (info.fields) |field| {
if (@field(tag_type, field.name) == tag) {
hash(hasher, @field(key, field.name), strat);
// TODO use a labelled break when it does not crash the compiler. cf #2908
// break :blk;
return;
}
}
unreachable;
} else @compileError("cannot hash untagged union type: " ++ @typeName(Key) ++ ", provide your own hash function");
},
.ErrorUnion => blk: {
const payload = key catch |err| {
hash(hasher, err, strat);
break :blk;
};
hash(hasher, payload, strat);
},
}
}
fn typeContainsSlice(comptime K: type) bool {
comptime {
if (meta.trait.isSlice(K)) {
return true;
}
if (meta.trait.is(.Struct)(K)) {
inline for (@typeInfo(K).Struct.fields) |field| {
if (typeContainsSlice(field.field_type)) {
return true;
}
}
}
if (meta.trait.is(.Union)(K)) {
inline for (@typeInfo(K).Union.fields) |field| {
if (typeContainsSlice(field.field_type)) {
return true;
}
}
}
return false;
}
}
/// Provides generic hashing for any eligible type.
/// Only hashes `key` itself, pointers are not followed.
/// Slices as well as unions and structs containing slices are rejected to avoid
/// ambiguity on the user's intention.
pub fn autoHash(hasher: anytype, key: anytype) void {
const Key = @TypeOf(key);
if (comptime typeContainsSlice(Key)) {
@compileError("std.auto_hash.autoHash does not allow slices as well as unions and structs containing slices here (" ++ @typeName(Key) ++
") because the intent is unclear. Consider using std.auto_hash.hash or providing your own hash function instead.");
}
hash(hasher, key, .Shallow);
}
const testing = std.testing;
const Wyhash = std.hash.Wyhash;
fn testHash(key: anytype) u64 {
// Any hash could be used here, for testing autoHash.
var hasher = Wyhash.init(0);
hash(&hasher, key, .Shallow);
return hasher.final();
}
fn testHashShallow(key: anytype) u64 {
// Any hash could be used here, for testing autoHash.
var hasher = Wyhash.init(0);
hash(&hasher, key, .Shallow);
return hasher.final();
}
fn testHashDeep(key: anytype) u64 {
// Any hash could be used here, for testing autoHash.
var hasher = Wyhash.init(0);
hash(&hasher, key, .Deep);
return hasher.final();
}
fn testHashDeepRecursive(key: anytype) u64 {
// Any hash could be used here, for testing autoHash.
var hasher = Wyhash.init(0);
hash(&hasher, key, .DeepRecursive);
return hasher.final();
}
test "typeContainsSlice" {
comptime {
testing.expect(!typeContainsSlice(meta.Tag(std.builtin.TypeInfo)));
testing.expect(typeContainsSlice([]const u8));
testing.expect(!typeContainsSlice(u8));
const A = struct { x: []const u8 };
const B = struct { a: A };
const C = struct { b: B };
const D = struct { x: u8 };
testing.expect(typeContainsSlice(A));
testing.expect(typeContainsSlice(B));
testing.expect(typeContainsSlice(C));
testing.expect(!typeContainsSlice(D));
}
}
test "hash pointer" {
const array = [_]u32{ 123, 123, 123 };
const a = &array[0];
const b = &array[1];
const c = &array[2];
const d = a;
testing.expect(testHashShallow(a) == testHashShallow(d));
testing.expect(testHashShallow(a) != testHashShallow(c));
testing.expect(testHashShallow(a) != testHashShallow(b));
testing.expect(testHashDeep(a) == testHashDeep(a));
testing.expect(testHashDeep(a) == testHashDeep(c));
testing.expect(testHashDeep(a) == testHashDeep(b));
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(a));
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(c));
testing.expect(testHashDeepRecursive(a) == testHashDeepRecursive(b));
}
test "hash slice shallow" {
// Allocate one array dynamically so that we're assured it is not merged
// with the other by the optimization passes.
const array1 = try std.testing.allocator.create([6]u32);
defer std.testing.allocator.destroy(array1);
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
// TODO audit deep/shallow - maybe it has the wrong behavior with respect to array pointers and slices
var runtime_zero: usize = 0;
const a = array1[runtime_zero..];
const b = array2[runtime_zero..];
const c = array1[runtime_zero..3];
testing.expect(testHashShallow(a) == testHashShallow(a));
testing.expect(testHashShallow(a) != testHashShallow(array1));
testing.expect(testHashShallow(a) != testHashShallow(b));
testing.expect(testHashShallow(a) != testHashShallow(c));
}
test "hash slice deep" {
// Allocate one array dynamically so that we're assured it is not merged
// with the other by the optimization passes.
const array1 = try std.testing.allocator.create([6]u32);
defer std.testing.allocator.destroy(array1);
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
const a = array1[0..];
const b = array2[0..];
const c = array1[0..3];
testing.expect(testHashDeep(a) == testHashDeep(a));
testing.expect(testHashDeep(a) == testHashDeep(array1));
testing.expect(testHashDeep(a) == testHashDeep(b));
testing.expect(testHashDeep(a) != testHashDeep(c));
}
test "hash struct deep" {
const Foo = struct {
a: u32,
b: u16,
c: *bool,
const Self = @This();
pub fn init(allocator: *mem.Allocator, a_: u32, b_: u16, c_: bool) !Self {
const ptr = try allocator.create(bool);
ptr.* = c_;
return Self{ .a = a_, .b = b_, .c = ptr };
}
};
const allocator = std.testing.allocator;
const foo = try Foo.init(allocator, 123, 10, true);
const bar = try Foo.init(allocator, 123, 10, true);
const baz = try Foo.init(allocator, 123, 10, false);
defer allocator.destroy(foo.c);
defer allocator.destroy(bar.c);
defer allocator.destroy(baz.c);
testing.expect(testHashDeep(foo) == testHashDeep(bar));
testing.expect(testHashDeep(foo) != testHashDeep(baz));
testing.expect(testHashDeep(bar) != testHashDeep(baz));
var hasher = Wyhash.init(0);
const h = testHashDeep(foo);
autoHash(&hasher, foo.a);
autoHash(&hasher, foo.b);
autoHash(&hasher, foo.c.*);
testing.expectEqual(h, hasher.final());
const h2 = testHashDeepRecursive(&foo);
testing.expect(h2 != testHashDeep(&foo));
testing.expect(h2 == testHashDeep(foo));
}
test "testHash optional" {
const a: ?u32 = 123;
const b: ?u32 = null;
testing.expectEqual(testHash(a), testHash(@as(u32, 123)));
testing.expect(testHash(a) != testHash(b));
testing.expectEqual(testHash(b), 0);
}
test "testHash array" {
const a = [_]u32{ 1, 2, 3 };
const h = testHash(a);
var hasher = Wyhash.init(0);
autoHash(&hasher, @as(u32, 1));
autoHash(&hasher, @as(u32, 2));
autoHash(&hasher, @as(u32, 3));
testing.expectEqual(h, hasher.final());
}
test "testHash struct" {
const Foo = struct {
a: u32 = 1,
b: u32 = 2,
c: u32 = 3,
};
const f = Foo{};
const h = testHash(f);
var hasher = Wyhash.init(0);
autoHash(&hasher, @as(u32, 1));
autoHash(&hasher, @as(u32, 2));
autoHash(&hasher, @as(u32, 3));
testing.expectEqual(h, hasher.final());
}
test "testHash union" {
const Foo = union(enum) {
A: u32,
B: bool,
C: u32,
};
const a = Foo{ .A = 18 };
var b = Foo{ .B = true };
const c = Foo{ .C = 18 };
testing.expect(testHash(a) == testHash(a));
testing.expect(testHash(a) != testHash(b));
testing.expect(testHash(a) != testHash(c));
b = Foo{ .A = 18 };
testing.expect(testHash(a) == testHash(b));
}
test "testHash vector" {
// Disabled because of #3317
if (@import("builtin").arch == .mipsel or @import("builtin").arch == .mips) return error.SkipZigTest;
const a: meta.Vector(4, u32) = [_]u32{ 1, 2, 3, 4 };
const b: meta.Vector(4, u32) = [_]u32{ 1, 2, 3, 5 };
testing.expect(testHash(a) == testHash(a));
testing.expect(testHash(a) != testHash(b));
const c: meta.Vector(4, u31) = [_]u31{ 1, 2, 3, 4 };
const d: meta.Vector(4, u31) = [_]u31{ 1, 2, 3, 5 };
testing.expect(testHash(c) == testHash(c));
testing.expect(testHash(c) != testHash(d));
}
test "testHash error union" {
const Errors = error{Test};
const Foo = struct {
a: u32 = 1,
b: u32 = 2,
c: u32 = 3,
};
const f = Foo{};
const g: Errors!Foo = Errors.Test;
testing.expect(testHash(f) != testHash(g));
testing.expect(testHash(f) == testHash(Foo{}));
testing.expect(testHash(g) == testHash(Errors.Test));
}