zig/lib/tsan/sanitizer_common/sanitizer_fuchsia.cpp
2020-12-24 01:18:47 -07:00

532 lines
17 KiB
C++

//===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and other sanitizer
// run-time libraries and implements Fuchsia-specific functions from
// sanitizer_common.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_fuchsia.h"
#if SANITIZER_FUCHSIA
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include <limits.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <zircon/errors.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
namespace __sanitizer {
void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
uptr internal_sched_yield() {
zx_status_t status = _zx_nanosleep(0);
CHECK_EQ(status, ZX_OK);
return 0; // Why doesn't this return void?
}
static void internal_nanosleep(zx_time_t ns) {
zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
CHECK_EQ(status, ZX_OK);
}
unsigned int internal_sleep(unsigned int seconds) {
internal_nanosleep(ZX_SEC(seconds));
return 0;
}
u64 NanoTime() {
zx_time_t time;
zx_status_t status = _zx_clock_get(ZX_CLOCK_UTC, &time);
CHECK_EQ(status, ZX_OK);
return time;
}
u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
uptr internal_getpid() {
zx_info_handle_basic_t info;
zx_status_t status =
_zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
sizeof(info), NULL, NULL);
CHECK_EQ(status, ZX_OK);
uptr pid = static_cast<uptr>(info.koid);
CHECK_EQ(pid, info.koid);
return pid;
}
int internal_dlinfo(void *handle, int request, void *p) {
UNIMPLEMENTED();
}
uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
tid_t GetTid() { return GetThreadSelf(); }
void Abort() { abort(); }
int Atexit(void (*function)(void)) { return atexit(function); }
void SleepForSeconds(int seconds) { internal_sleep(seconds); }
void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
pthread_attr_t attr;
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
void *base;
size_t size;
CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
CHECK_EQ(pthread_attr_destroy(&attr), 0);
*stack_bottom = reinterpret_cast<uptr>(base);
*stack_top = *stack_bottom + size;
}
void InitializePlatformEarly() {}
void MaybeReexec() {}
void CheckASLR() {}
void CheckMPROTECT() {}
void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
void DisableCoreDumperIfNecessary() {}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
void SetAlternateSignalStack() {}
void UnsetAlternateSignalStack() {}
void InitTlsSize() {}
void PrintModuleMap() {}
bool SignalContext::IsStackOverflow() const { return false; }
void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
BlockingMutex::BlockingMutex() {
// NOTE! It's important that this use internal_memset, because plain
// memset might be intercepted (e.g., actually be __asan_memset).
// Defining this so the compiler initializes each field, e.g.:
// BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
// might result in the compiler generating a call to memset, which would
// have the same problem.
internal_memset(this, 0, sizeof(*this));
}
void BlockingMutex::Lock() {
CHECK_EQ(owner_, 0);
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
return;
while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
zx_status_t status =
_zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping,
ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
if (status != ZX_ERR_BAD_STATE) // Normal race.
CHECK_EQ(status, ZX_OK);
}
}
void BlockingMutex::Unlock() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
CHECK_NE(v, MtxUnlocked);
if (v == MtxSleeping) {
zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
CHECK_EQ(status, ZX_OK);
}
}
void BlockingMutex::CheckLocked() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
}
uptr GetPageSize() { return PAGE_SIZE; }
uptr GetMmapGranularity() { return PAGE_SIZE; }
sanitizer_shadow_bounds_t ShadowBounds;
uptr GetMaxUserVirtualAddress() {
ShadowBounds = __sanitizer_shadow_bounds();
return ShadowBounds.memory_limit - 1;
}
uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
bool raw_report, bool die_for_nomem) {
size = RoundUpTo(size, PAGE_SIZE);
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
raw_report);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
// TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
uintptr_t addr;
status =
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
vmo, 0, size, &addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
raw_report);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
return MmapOrDie(size, mem_type);
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
return DoAnonymousMmapOrDie(size, mem_type, false, false);
}
uptr ReservedAddressRange::Init(uptr init_size, const char *name,
uptr fixed_addr) {
init_size = RoundUpTo(init_size, PAGE_SIZE);
DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
uintptr_t base;
zx_handle_t vmar;
zx_status_t status =
_zx_vmar_allocate(
_zx_vmar_root_self(),
ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC,
0, init_size, &vmar, &base);
if (status != ZX_OK)
ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
base_ = reinterpret_cast<void *>(base);
size_ = init_size;
name_ = name;
os_handle_ = vmar;
return reinterpret_cast<uptr>(base_);
}
static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
void *base, const char *name, bool die_for_nomem) {
uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
map_size = RoundUpTo(map_size, PAGE_SIZE);
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
return 0;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
DCHECK_GE(base + size_, map_size + offset);
uintptr_t addr;
status =
_zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
offset, vmo, 0, map_size, &addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
}
return 0;
}
IncreaseTotalMmap(map_size);
return addr;
}
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
const char *name) {
return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
name_, false);
}
uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
const char *name) {
return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
name_, true);
}
void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
if (!addr || !size) return;
size = RoundUpTo(size, PAGE_SIZE);
zx_status_t status =
_zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
if (status != ZX_OK) {
Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
SanitizerToolName, size, size, addr);
CHECK("unable to unmap" && 0);
}
DecreaseTotalMmap(size);
}
void ReservedAddressRange::Unmap(uptr addr, uptr size) {
CHECK_LE(size, size_);
const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
if (addr == reinterpret_cast<uptr>(base_)) {
if (size == size_) {
// Destroying the vmar effectively unmaps the whole mapping.
_zx_vmar_destroy(vmar);
_zx_handle_close(vmar);
os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
DecreaseTotalMmap(size);
return;
}
} else {
CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
}
// Partial unmapping does not affect the fact that the initial range is still
// reserved, and the resulting unmapped memory can't be reused.
UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
}
// This should never be called.
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
UNIMPLEMENTED();
}
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK_GE(size, PAGE_SIZE);
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
// TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
// Map a larger size to get a chunk of address space big enough that
// it surely contains an aligned region of the requested size. Then
// overwrite the aligned middle portion with a mapping from the
// beginning of the VMO, and unmap the excess before and after.
size_t map_size = size + alignment;
uintptr_t addr;
status =
_zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
vmo, 0, map_size, &addr);
if (status == ZX_OK) {
uintptr_t map_addr = addr;
uintptr_t map_end = map_addr + map_size;
addr = RoundUpTo(map_addr, alignment);
uintptr_t end = addr + size;
if (addr != map_addr) {
zx_info_vmar_t info;
status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
sizeof(info), NULL, NULL);
if (status == ZX_OK) {
uintptr_t new_addr;
status = _zx_vmar_map(
_zx_vmar_root_self(),
ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
addr - info.base, vmo, 0, size, &new_addr);
if (status == ZX_OK) CHECK_EQ(new_addr, addr);
}
}
if (status == ZX_OK && addr != map_addr)
status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
if (status == ZX_OK && end != map_end)
status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
}
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void UnmapOrDie(void *addr, uptr size) {
UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
}
// This is used on the shadow mapping, which cannot be changed.
// Zircon doesn't have anything like MADV_DONTNEED.
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
void DumpProcessMap() {
// TODO(mcgrathr): write it
return;
}
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
// TODO(mcgrathr): Figure out a better way.
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status == ZX_OK) {
status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
_zx_handle_close(vmo);
}
return status == ZX_OK;
}
// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
uptr *read_len, uptr max_len, error_t *errno_p) {
zx_handle_t vmo;
zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
if (status == ZX_OK) {
uint64_t vmo_size;
status = _zx_vmo_get_size(vmo, &vmo_size);
if (status == ZX_OK) {
if (vmo_size < max_len) max_len = vmo_size;
size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
uintptr_t addr;
status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
map_size, &addr);
if (status == ZX_OK) {
*buff = reinterpret_cast<char *>(addr);
*buff_size = map_size;
*read_len = max_len;
}
}
_zx_handle_close(vmo);
}
if (status != ZX_OK && errno_p) *errno_p = status;
return status == ZX_OK;
}
void RawWrite(const char *buffer) {
constexpr size_t size = 128;
static _Thread_local char line[size];
static _Thread_local size_t lastLineEnd = 0;
static _Thread_local size_t cur = 0;
while (*buffer) {
if (cur >= size) {
if (lastLineEnd == 0)
lastLineEnd = size;
__sanitizer_log_write(line, lastLineEnd);
internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
cur = cur - lastLineEnd;
lastLineEnd = 0;
}
if (*buffer == '\n')
lastLineEnd = cur + 1;
line[cur++] = *buffer++;
}
// Flush all complete lines before returning.
if (lastLineEnd != 0) {
__sanitizer_log_write(line, lastLineEnd);
internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
cur = cur - lastLineEnd;
lastLineEnd = 0;
}
}
void CatastrophicErrorWrite(const char *buffer, uptr length) {
__sanitizer_log_write(buffer, length);
}
char **StoredArgv;
char **StoredEnviron;
char **GetArgv() { return StoredArgv; }
char **GetEnviron() { return StoredEnviron; }
const char *GetEnv(const char *name) {
if (StoredEnviron) {
uptr NameLen = internal_strlen(name);
for (char **Env = StoredEnviron; *Env != 0; Env++) {
if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
return (*Env) + NameLen + 1;
}
}
return nullptr;
}
uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
const char *argv0 = "<UNKNOWN>";
if (StoredArgv && StoredArgv[0]) {
argv0 = StoredArgv[0];
}
internal_strncpy(buf, argv0, buf_len);
return internal_strlen(buf);
}
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
return ReadBinaryName(buf, buf_len);
}
uptr MainThreadStackBase, MainThreadStackSize;
bool GetRandom(void *buffer, uptr length, bool blocking) {
CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
_zx_cprng_draw(buffer, length);
return true;
}
u32 GetNumberOfCPUs() {
return zx_system_get_num_cpus();
}
uptr GetRSS() { UNIMPLEMENTED(); }
} // namespace __sanitizer
using namespace __sanitizer;
extern "C" {
void __sanitizer_startup_hook(int argc, char **argv, char **envp,
void *stack_base, size_t stack_size) {
__sanitizer::StoredArgv = argv;
__sanitizer::StoredEnviron = envp;
__sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
__sanitizer::MainThreadStackSize = stack_size;
}
void __sanitizer_set_report_path(const char *path) {
// Handle the initialization code in each sanitizer, but no other calls.
// This setting is never consulted on Fuchsia.
DCHECK_EQ(path, common_flags()->log_path);
}
void __sanitizer_set_report_fd(void *fd) {
UNREACHABLE("not available on Fuchsia");
}
} // extern "C"
#endif // SANITIZER_FUCHSIA