zig/lib/std/heap/memory_pool.zig
mlugg f26dda2117 all: migrate code to new cast builtin syntax
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:

* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00

182 lines
6.5 KiB
Zig

const std = @import("../std.zig");
const debug_mode = @import("builtin").mode == .Debug;
pub const MemoryPoolError = error{OutOfMemory};
/// A memory pool that can allocate objects of a single type very quickly.
/// Use this when you need to allocate a lot of objects of the same type,
/// because It outperforms general purpose allocators.
pub fn MemoryPool(comptime Item: type) type {
return MemoryPoolAligned(Item, @alignOf(Item));
}
/// A memory pool that can allocate objects of a single type very quickly.
/// Use this when you need to allocate a lot of objects of the same type,
/// because It outperforms general purpose allocators.
pub fn MemoryPoolAligned(comptime Item: type, comptime alignment: u29) type {
if (@alignOf(Item) == alignment) {
return MemoryPoolExtra(Item, .{});
} else {
return MemoryPoolExtra(Item, .{ .alignment = alignment });
}
}
pub const Options = struct {
/// The alignment of the memory pool items. Use `null` for natural alignment.
alignment: ?u29 = null,
/// If `true`, the memory pool can allocate additional items after a initial setup.
/// If `false`, the memory pool will not allocate further after a call to `initPreheated`.
growable: bool = true,
};
/// A memory pool that can allocate objects of a single type very quickly.
/// Use this when you need to allocate a lot of objects of the same type,
/// because It outperforms general purpose allocators.
pub fn MemoryPoolExtra(comptime Item: type, comptime pool_options: Options) type {
return struct {
const Pool = @This();
/// Size of the memory pool items. This is not necessarily the same
/// as `@sizeOf(Item)` as the pool also uses the items for internal means.
pub const item_size = @max(@sizeOf(Node), @sizeOf(Item));
/// Alignment of the memory pool items. This is not necessarily the same
/// as `@alignOf(Item)` as the pool also uses the items for internal means.
pub const item_alignment = @max(@alignOf(Node), pool_options.alignment orelse 0);
const Node = struct {
next: ?*@This(),
};
const NodePtr = *align(item_alignment) Node;
const ItemPtr = *align(item_alignment) Item;
arena: std.heap.ArenaAllocator,
free_list: ?NodePtr = null,
/// Creates a new memory pool.
pub fn init(allocator: std.mem.Allocator) Pool {
return .{ .arena = std.heap.ArenaAllocator.init(allocator) };
}
/// Creates a new memory pool and pre-allocates `initial_size` items.
/// This allows the up to `initial_size` active allocations before a
/// `OutOfMemory` error happens when calling `create()`.
pub fn initPreheated(allocator: std.mem.Allocator, initial_size: usize) MemoryPoolError!Pool {
var pool = init(allocator);
errdefer pool.deinit();
var i: usize = 0;
while (i < initial_size) : (i += 1) {
const raw_mem = try pool.allocNew();
const free_node = @as(NodePtr, @ptrCast(raw_mem));
free_node.* = Node{
.next = pool.free_list,
};
pool.free_list = free_node;
}
return pool;
}
/// Destroys the memory pool and frees all allocated memory.
pub fn deinit(pool: *Pool) void {
pool.arena.deinit();
pool.* = undefined;
}
/// Resets the memory pool and destroys all allocated items.
/// This can be used to batch-destroy all objects without invalidating the memory pool.
pub fn reset(pool: *Pool) void {
// TODO: Potentially store all allocated objects in a list as well, allowing to
// just move them into the free list instead of actually releasing the memory.
const allocator = pool.arena.child_allocator;
// TODO: Replace with "pool.arena.reset()" when implemented.
pool.arena.deinit();
pool.arena = std.heap.ArenaAllocator.init(allocator);
pool.free_list = null;
}
/// Creates a new item and adds it to the memory pool.
pub fn create(pool: *Pool) !ItemPtr {
const node = if (pool.free_list) |item| blk: {
pool.free_list = item.next;
break :blk item;
} else if (pool_options.growable)
@as(NodePtr, @ptrCast(try pool.allocNew()))
else
return error.OutOfMemory;
const ptr = @as(ItemPtr, @ptrCast(node));
ptr.* = undefined;
return ptr;
}
/// Destroys a previously created item.
/// Only pass items to `ptr` that were previously created with `create()` of the same memory pool!
pub fn destroy(pool: *Pool, ptr: ItemPtr) void {
ptr.* = undefined;
const node = @as(NodePtr, @ptrCast(ptr));
node.* = Node{
.next = pool.free_list,
};
pool.free_list = node;
}
fn allocNew(pool: *Pool) MemoryPoolError!*align(item_alignment) [item_size]u8 {
const mem = try pool.arena.allocator().alignedAlloc(u8, item_alignment, item_size);
return mem[0..item_size]; // coerce slice to array pointer
}
};
}
test "memory pool: basic" {
var pool = MemoryPool(u32).init(std.testing.allocator);
defer pool.deinit();
const p1 = try pool.create();
const p2 = try pool.create();
const p3 = try pool.create();
// Assert uniqueness
try std.testing.expect(p1 != p2);
try std.testing.expect(p1 != p3);
try std.testing.expect(p2 != p3);
pool.destroy(p2);
const p4 = try pool.create();
// Assert memory reuse
try std.testing.expect(p2 == p4);
}
test "memory pool: preheating (success)" {
var pool = try MemoryPool(u32).initPreheated(std.testing.allocator, 4);
defer pool.deinit();
_ = try pool.create();
_ = try pool.create();
_ = try pool.create();
}
test "memory pool: preheating (failure)" {
var failer = std.testing.FailingAllocator.init(std.testing.allocator, 0);
try std.testing.expectError(error.OutOfMemory, MemoryPool(u32).initPreheated(failer.allocator(), 5));
}
test "memory pool: growable" {
var pool = try MemoryPoolExtra(u32, .{ .growable = false }).initPreheated(std.testing.allocator, 4);
defer pool.deinit();
_ = try pool.create();
_ = try pool.create();
_ = try pool.create();
_ = try pool.create();
try std.testing.expectError(error.OutOfMemory, pool.create());
}