zig/lib/compiler_rt/cos.zig
Cody Tapscott c50f33b111 compiler_rt: Always export "standard" symbol names
The Zig LLVM backend emits calls to softfloat methods with the "standard
compiler-rt" names. Rather than add complexity to the backend and
have to synchronize the naming scheme across all targets, the simplest
fix is just to export these symbols under both the "standard" and the
platform-specific naming convention.
2022-10-22 17:19:33 -07:00

173 lines
5.3 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const arch = builtin.cpu.arch;
const math = std.math;
const expect = std.testing.expect;
const common = @import("common.zig");
pub const panic = common.panic;
const trig = @import("trig.zig");
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
comptime {
@export(__cosh, .{ .name = "__cosh", .linkage = common.linkage });
@export(cosf, .{ .name = "cosf", .linkage = common.linkage });
@export(cos, .{ .name = "cos", .linkage = common.linkage });
@export(__cosx, .{ .name = "__cosx", .linkage = common.linkage });
if (common.want_ppc_abi) {
@export(cosq, .{ .name = "cosf128", .linkage = common.linkage });
}
@export(cosq, .{ .name = "cosq", .linkage = common.linkage });
@export(cosl, .{ .name = "cosl", .linkage = common.linkage });
}
pub fn __cosh(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, cosf(a));
}
pub fn cosf(x: f32) callconv(.C) f32 {
// Small multiples of pi/2 rounded to double precision.
const c1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
const c2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
const c3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
const c4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
var ix = @bitCast(u32, x);
const sign = ix >> 31 != 0;
ix &= 0x7fffffff;
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
if (ix < 0x39800000) { // |x| < 2**-12
// raise inexact if x != 0
math.doNotOptimizeAway(x + 0x1p120);
return 1.0;
}
return trig.__cosdf(x);
}
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
if (ix > 0x4016cbe3) { // |x| ~> 3*pi/4
return -trig.__cosdf(if (sign) x + c2pio2 else x - c2pio2);
} else {
if (sign) {
return trig.__sindf(x + c1pio2);
} else {
return trig.__sindf(c1pio2 - x);
}
}
}
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
if (ix > 0x40afeddf) { // |x| ~> 7*pi/4
return trig.__cosdf(if (sign) x + c4pio2 else x - c4pio2);
} else {
if (sign) {
return trig.__sindf(-x - c3pio2);
} else {
return trig.__sindf(x - c3pio2);
}
}
}
// cos(Inf or NaN) is NaN
if (ix >= 0x7f800000) {
return x - x;
}
var y: f64 = undefined;
const n = rem_pio2f(x, &y);
return switch (n & 3) {
0 => trig.__cosdf(y),
1 => trig.__sindf(-y),
2 => -trig.__cosdf(y),
else => trig.__sindf(y),
};
}
pub fn cos(x: f64) callconv(.C) f64 {
var ix = @bitCast(u64, x) >> 32;
ix &= 0x7fffffff;
// |x| ~< pi/4
if (ix <= 0x3fe921fb) {
if (ix < 0x3e46a09e) { // |x| < 2**-27 * sqrt(2)
// raise inexact if x!=0
math.doNotOptimizeAway(x + 0x1p120);
return 1.0;
}
return trig.__cos(x, 0);
}
// cos(Inf or NaN) is NaN
if (ix >= 0x7ff00000) {
return x - x;
}
var y: [2]f64 = undefined;
const n = rem_pio2(x, &y);
return switch (n & 3) {
0 => trig.__cos(y[0], y[1]),
1 => -trig.__sin(y[0], y[1], 1),
2 => -trig.__cos(y[0], y[1]),
else => trig.__sin(y[0], y[1], 1),
};
}
pub fn __cosx(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, cosq(a));
}
pub fn cosq(a: f128) callconv(.C) f128 {
// TODO: more correct implementation
return cos(@floatCast(f64, a));
}
pub fn cosl(x: c_longdouble) callconv(.C) c_longdouble {
switch (@typeInfo(c_longdouble).Float.bits) {
16 => return __cosh(x),
32 => return cosf(x),
64 => return cos(x),
80 => return __cosx(x),
128 => return cosq(x),
else => @compileError("unreachable"),
}
}
test "cos32" {
const epsilon = 0.00001;
try expect(math.approxEqAbs(f32, cosf(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f32, cosf(0.2), 0.980067, epsilon));
try expect(math.approxEqAbs(f32, cosf(0.8923), 0.627623, epsilon));
try expect(math.approxEqAbs(f32, cosf(1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f32, cosf(-1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f32, cosf(37.45), 0.969132, epsilon));
try expect(math.approxEqAbs(f32, cosf(89.123), 0.400798, epsilon));
}
test "cos64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, cos(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f64, cos(0.2), 0.980067, epsilon));
try expect(math.approxEqAbs(f64, cos(0.8923), 0.627623, epsilon));
try expect(math.approxEqAbs(f64, cos(1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f64, cos(-1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f64, cos(37.45), 0.969132, epsilon));
try expect(math.approxEqAbs(f64, cos(89.123), 0.40080, epsilon));
}
test "cos32.special" {
try expect(math.isNan(cosf(math.inf(f32))));
try expect(math.isNan(cosf(-math.inf(f32))));
try expect(math.isNan(cosf(math.nan(f32))));
}
test "cos64.special" {
try expect(math.isNan(cos(math.inf(f64))));
try expect(math.isNan(cos(-math.inf(f64))));
try expect(math.isNan(cos(math.nan(f64))));
}