mirror of
https://github.com/ziglang/zig.git
synced 2024-11-27 23:52:31 +00:00
c50f33b111
The Zig LLVM backend emits calls to softfloat methods with the "standard compiler-rt" names. Rather than add complexity to the backend and have to synchronize the naming scheme across all targets, the simplest fix is just to export these symbols under both the "standard" and the platform-specific naming convention.
242 lines
6.4 KiB
Zig
242 lines
6.4 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/expf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c
|
|
|
|
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const arch = builtin.cpu.arch;
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
const common = @import("common.zig");
|
|
|
|
pub const panic = common.panic;
|
|
|
|
comptime {
|
|
@export(__exph, .{ .name = "__exph", .linkage = common.linkage });
|
|
@export(expf, .{ .name = "expf", .linkage = common.linkage });
|
|
@export(exp, .{ .name = "exp", .linkage = common.linkage });
|
|
@export(__expx, .{ .name = "__expx", .linkage = common.linkage });
|
|
if (common.want_ppc_abi) {
|
|
@export(expq, .{ .name = "expf128", .linkage = common.linkage });
|
|
}
|
|
@export(expq, .{ .name = "expq", .linkage = common.linkage });
|
|
@export(expl, .{ .name = "expl", .linkage = common.linkage });
|
|
}
|
|
|
|
pub fn __exph(a: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, expf(a));
|
|
}
|
|
|
|
pub fn expf(x_: f32) callconv(.C) f32 {
|
|
const half = [_]f32{ 0.5, -0.5 };
|
|
const ln2hi = 6.9314575195e-1;
|
|
const ln2lo = 1.4286067653e-6;
|
|
const invln2 = 1.4426950216e+0;
|
|
const P1 = 1.6666625440e-1;
|
|
const P2 = -2.7667332906e-3;
|
|
|
|
var x = x_;
|
|
var hx = @bitCast(u32, x);
|
|
const sign = @intCast(i32, hx >> 31);
|
|
hx &= 0x7FFFFFFF;
|
|
|
|
if (math.isNan(x)) {
|
|
return x;
|
|
}
|
|
|
|
// |x| >= -87.33655 or nan
|
|
if (hx >= 0x42AEAC50) {
|
|
// nan
|
|
if (hx > 0x7F800000) {
|
|
return x;
|
|
}
|
|
// x >= 88.722839
|
|
if (hx >= 0x42b17218 and sign == 0) {
|
|
return x * 0x1.0p127;
|
|
}
|
|
if (sign != 0) {
|
|
math.doNotOptimizeAway(-0x1.0p-149 / x); // overflow
|
|
// x <= -103.972084
|
|
if (hx >= 0x42CFF1B5) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
var k: i32 = undefined;
|
|
var hi: f32 = undefined;
|
|
var lo: f32 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3EB17218) {
|
|
// |x| > 1.5 * ln2
|
|
if (hx > 0x3F851592) {
|
|
k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]);
|
|
} else {
|
|
k = 1 - sign - sign;
|
|
}
|
|
|
|
const fk = @intToFloat(f32, k);
|
|
hi = x - fk * ln2hi;
|
|
lo = fk * ln2lo;
|
|
x = hi - lo;
|
|
}
|
|
// |x| > 2^(-14)
|
|
else if (hx > 0x39000000) {
|
|
k = 0;
|
|
hi = x;
|
|
lo = 0;
|
|
} else {
|
|
math.doNotOptimizeAway(0x1.0p127 + x); // inexact
|
|
return 1 + x;
|
|
}
|
|
|
|
const xx = x * x;
|
|
const c = x - xx * (P1 + xx * P2);
|
|
const y = 1 + (x * c / (2 - c) - lo + hi);
|
|
|
|
if (k == 0) {
|
|
return y;
|
|
} else {
|
|
return math.scalbn(y, k);
|
|
}
|
|
}
|
|
|
|
pub fn exp(x_: f64) callconv(.C) f64 {
|
|
const half = [_]f64{ 0.5, -0.5 };
|
|
const ln2hi: f64 = 6.93147180369123816490e-01;
|
|
const ln2lo: f64 = 1.90821492927058770002e-10;
|
|
const invln2: f64 = 1.44269504088896338700e+00;
|
|
const P1: f64 = 1.66666666666666019037e-01;
|
|
const P2: f64 = -2.77777777770155933842e-03;
|
|
const P3: f64 = 6.61375632143793436117e-05;
|
|
const P4: f64 = -1.65339022054652515390e-06;
|
|
const P5: f64 = 4.13813679705723846039e-08;
|
|
|
|
var x = x_;
|
|
var ux = @bitCast(u64, x);
|
|
var hx = ux >> 32;
|
|
const sign = @intCast(i32, hx >> 31);
|
|
hx &= 0x7FFFFFFF;
|
|
|
|
if (math.isNan(x)) {
|
|
return x;
|
|
}
|
|
|
|
// |x| >= 708.39 or nan
|
|
if (hx >= 0x4086232B) {
|
|
// nan
|
|
if (hx > 0x7FF00000) {
|
|
return x;
|
|
}
|
|
if (x > 709.782712893383973096) {
|
|
// overflow if x != inf
|
|
if (!math.isInf(x)) {
|
|
math.raiseOverflow();
|
|
}
|
|
return math.inf(f64);
|
|
}
|
|
if (x < -708.39641853226410622) {
|
|
// underflow if x != -inf
|
|
// math.doNotOptimizeAway(@as(f32, -0x1.0p-149 / x));
|
|
if (x < -745.13321910194110842) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// argument reduction
|
|
var k: i32 = undefined;
|
|
var hi: f64 = undefined;
|
|
var lo: f64 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3FD62E42) {
|
|
// |x| >= 1.5 * ln2
|
|
if (hx > 0x3FF0A2B2) {
|
|
k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]);
|
|
} else {
|
|
k = 1 - sign - sign;
|
|
}
|
|
|
|
const dk = @intToFloat(f64, k);
|
|
hi = x - dk * ln2hi;
|
|
lo = dk * ln2lo;
|
|
x = hi - lo;
|
|
}
|
|
// |x| > 2^(-28)
|
|
else if (hx > 0x3E300000) {
|
|
k = 0;
|
|
hi = x;
|
|
lo = 0;
|
|
} else {
|
|
// inexact if x != 0
|
|
// math.doNotOptimizeAway(0x1.0p1023 + x);
|
|
return 1 + x;
|
|
}
|
|
|
|
const xx = x * x;
|
|
const c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
|
|
const y = 1 + (x * c / (2 - c) - lo + hi);
|
|
|
|
if (k == 0) {
|
|
return y;
|
|
} else {
|
|
return math.scalbn(y, k);
|
|
}
|
|
}
|
|
|
|
pub fn __expx(a: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, expq(a));
|
|
}
|
|
|
|
pub fn expq(a: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return exp(@floatCast(f64, a));
|
|
}
|
|
|
|
pub fn expl(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __exph(x),
|
|
32 => return expf(x),
|
|
64 => return exp(x),
|
|
80 => return __expx(x),
|
|
128 => return expq(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "exp32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(expf(0.0) == 1.0);
|
|
try expect(math.approxEqAbs(f32, expf(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, expf(0.2), 1.221403, epsilon));
|
|
try expect(math.approxEqAbs(f32, expf(0.8923), 2.440737, epsilon));
|
|
try expect(math.approxEqAbs(f32, expf(1.5), 4.481689, epsilon));
|
|
}
|
|
|
|
test "exp64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(exp(0.0) == 1.0);
|
|
try expect(math.approxEqAbs(f64, exp(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, exp(0.2), 1.221403, epsilon));
|
|
try expect(math.approxEqAbs(f64, exp(0.8923), 2.440737, epsilon));
|
|
try expect(math.approxEqAbs(f64, exp(1.5), 4.481689, epsilon));
|
|
}
|
|
|
|
test "exp32.special" {
|
|
try expect(math.isPositiveInf(expf(math.inf(f32))));
|
|
try expect(math.isNan(expf(math.nan(f32))));
|
|
}
|
|
|
|
test "exp64.special" {
|
|
try expect(math.isPositiveInf(exp(math.inf(f64))));
|
|
try expect(math.isNan(exp(math.nan(f64))));
|
|
}
|