mirror of
https://github.com/ziglang/zig.git
synced 2024-11-27 23:52:31 +00:00
c50f33b111
The Zig LLVM backend emits calls to softfloat methods with the "standard compiler-rt" names. Rather than add complexity to the backend and have to synchronize the naming scheme across all targets, the simplest fix is just to export these symbols under both the "standard" and the platform-specific naming convention.
215 lines
6.4 KiB
Zig
215 lines
6.4 KiB
Zig
//! Ported from musl, which is licensed under the MIT license:
|
|
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//!
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
|
|
|
|
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
const maxInt = std.math.maxInt;
|
|
const arch = builtin.cpu.arch;
|
|
const common = @import("common.zig");
|
|
|
|
pub const panic = common.panic;
|
|
|
|
comptime {
|
|
@export(__log2h, .{ .name = "__log2h", .linkage = common.linkage });
|
|
@export(log2f, .{ .name = "log2f", .linkage = common.linkage });
|
|
@export(log2, .{ .name = "log2", .linkage = common.linkage });
|
|
@export(__log2x, .{ .name = "__log2x", .linkage = common.linkage });
|
|
if (common.want_ppc_abi) {
|
|
@export(log2q, .{ .name = "log2f128", .linkage = common.linkage });
|
|
}
|
|
@export(log2q, .{ .name = "log2q", .linkage = common.linkage });
|
|
@export(log2l, .{ .name = "log2l", .linkage = common.linkage });
|
|
}
|
|
|
|
pub fn __log2h(a: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, log2f(a));
|
|
}
|
|
|
|
pub fn log2f(x_: f32) callconv(.C) f32 {
|
|
const ivln2hi: f32 = 1.4428710938e+00;
|
|
const ivln2lo: f32 = -1.7605285393e-04;
|
|
const Lg1: f32 = 0xaaaaaa.0p-24;
|
|
const Lg2: f32 = 0xccce13.0p-25;
|
|
const Lg3: f32 = 0x91e9ee.0p-25;
|
|
const Lg4: f32 = 0xf89e26.0p-26;
|
|
|
|
var x = x_;
|
|
var u = @bitCast(u32, x);
|
|
var ix = u;
|
|
var k: i32 = 0;
|
|
|
|
// x < 2^(-126)
|
|
if (ix < 0x00800000 or ix >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log(-#) = nan
|
|
if (ix >> 31 != 0) {
|
|
return math.nan(f32);
|
|
}
|
|
|
|
k -= 25;
|
|
x *= 0x1.0p25;
|
|
ix = @bitCast(u32, x);
|
|
} else if (ix >= 0x7F800000) {
|
|
return x;
|
|
} else if (ix == 0x3F800000) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
ix += 0x3F800000 - 0x3F3504F3;
|
|
k += @intCast(i32, ix >> 23) - 0x7F;
|
|
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
|
|
x = @bitCast(f32, ix);
|
|
|
|
const f = x - 1.0;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * Lg4);
|
|
const t2 = z * (Lg1 + w * Lg3);
|
|
const R = t2 + t1;
|
|
const hfsq = 0.5 * f * f;
|
|
|
|
var hi = f - hfsq;
|
|
u = @bitCast(u32, hi);
|
|
u &= 0xFFFFF000;
|
|
hi = @bitCast(f32, u);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k);
|
|
}
|
|
|
|
pub fn log2(x_: f64) callconv(.C) f64 {
|
|
const ivln2hi: f64 = 1.44269504072144627571e+00;
|
|
const ivln2lo: f64 = 1.67517131648865118353e-10;
|
|
const Lg1: f64 = 6.666666666666735130e-01;
|
|
const Lg2: f64 = 3.999999999940941908e-01;
|
|
const Lg3: f64 = 2.857142874366239149e-01;
|
|
const Lg4: f64 = 2.222219843214978396e-01;
|
|
const Lg5: f64 = 1.818357216161805012e-01;
|
|
const Lg6: f64 = 1.531383769920937332e-01;
|
|
const Lg7: f64 = 1.479819860511658591e-01;
|
|
|
|
var x = x_;
|
|
var ix = @bitCast(u64, x);
|
|
var hx = @intCast(u32, ix >> 32);
|
|
var k: i32 = 0;
|
|
|
|
if (hx < 0x00100000 or hx >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f64);
|
|
}
|
|
// log(-#) = nan
|
|
if (hx >> 31 != 0) {
|
|
return math.nan(f64);
|
|
}
|
|
|
|
// subnormal, scale x
|
|
k -= 54;
|
|
x *= 0x1.0p54;
|
|
hx = @intCast(u32, @bitCast(u64, x) >> 32);
|
|
} else if (hx >= 0x7FF00000) {
|
|
return x;
|
|
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
hx += 0x3FF00000 - 0x3FE6A09E;
|
|
k += @intCast(i32, hx >> 20) - 0x3FF;
|
|
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
|
|
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
|
|
x = @bitCast(f64, ix);
|
|
|
|
const f = x - 1.0;
|
|
const hfsq = 0.5 * f * f;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
|
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
|
const R = t2 + t1;
|
|
|
|
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
|
|
var hi = f - hfsq;
|
|
var hii = @bitCast(u64, hi);
|
|
hii &= @as(u64, maxInt(u64)) << 32;
|
|
hi = @bitCast(f64, hii);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
|
|
var val_hi = hi * ivln2hi;
|
|
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
|
|
|
|
// spadd(val_hi, val_lo, y)
|
|
const y = @intToFloat(f64, k);
|
|
const ww = y + val_hi;
|
|
val_lo += (y - ww) + val_hi;
|
|
val_hi = ww;
|
|
|
|
return val_lo + val_hi;
|
|
}
|
|
|
|
pub fn __log2x(a: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, log2q(a));
|
|
}
|
|
|
|
pub fn log2q(a: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return log2(@floatCast(f64, a));
|
|
}
|
|
|
|
pub fn log2l(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __log2h(x),
|
|
32 => return log2f(x),
|
|
64 => return log2(x),
|
|
80 => return __log2x(x),
|
|
128 => return log2q(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "log2_32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f32, log2f(0.2), -2.321928, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(0.8923), -0.164399, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(1.5), 0.584962, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(37.45), 5.226894, epsilon));
|
|
try expect(math.approxEqAbs(f32, log2f(123123.234375), 16.909744, epsilon));
|
|
}
|
|
|
|
test "log2_64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, log2(0.2), -2.321928, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(0.8923), -0.164399, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(1.5), 0.584962, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(37.45), 5.226894, epsilon));
|
|
try expect(math.approxEqAbs(f64, log2(123123.234375), 16.909744, epsilon));
|
|
}
|
|
|
|
test "log2_32.special" {
|
|
try expect(math.isPositiveInf(log2f(math.inf(f32))));
|
|
try expect(math.isNegativeInf(log2f(0.0)));
|
|
try expect(math.isNan(log2f(-1.0)));
|
|
try expect(math.isNan(log2f(math.nan(f32))));
|
|
}
|
|
|
|
test "log2_64.special" {
|
|
try expect(math.isPositiveInf(log2(math.inf(f64))));
|
|
try expect(math.isNegativeInf(log2(0.0)));
|
|
try expect(math.isNan(log2(-1.0)));
|
|
try expect(math.isNan(log2(math.nan(f64))));
|
|
}
|