zig/lib/compiler_rt/mulf3.zig
Cody Tapscott 0d533433e2 compiler_rt: Add missing f16 functions
This change also exposes some of the existing functions under both the
PPC-style names symbols and the compiler-rt-style names, since Zig
currently lowers softfloat calls to the latter.
2022-10-13 12:53:20 -07:00

205 lines
8.3 KiB
Zig

const std = @import("std");
const math = std.math;
const builtin = @import("builtin");
const common = @import("./common.zig");
/// Ported from:
/// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc
pub inline fn mulf3(comptime T: type, a: T, b: T) T {
@setRuntimeSafety(builtin.is_test);
const typeWidth = @typeInfo(T).Float.bits;
const significandBits = math.floatMantissaBits(T);
const fractionalBits = math.floatFractionalBits(T);
const exponentBits = math.floatExponentBits(T);
const Z = std.meta.Int(.unsigned, typeWidth);
// ZSignificand is large enough to contain the significand, including an explicit integer bit
const ZSignificand = PowerOfTwoSignificandZ(T);
const ZSignificandBits = @typeInfo(ZSignificand).Int.bits;
const roundBit = (1 << (ZSignificandBits - 1));
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const exponentBias = (maxExponent >> 1);
const integerBit = (@as(ZSignificand, 1) << fractionalBits);
const quietBit = integerBit >> 1;
const significandMask = (@as(Z, 1) << significandBits) - 1;
const absMask = signBit - 1;
const qnanRep = @bitCast(Z, math.nan(T)) | quietBit;
const infRep = @bitCast(Z, math.inf(T));
const minNormalRep = @bitCast(Z, math.floatMin(T));
const ZExp = if (typeWidth >= 32) u32 else Z;
const aExponent = @truncate(ZExp, (@bitCast(Z, a) >> significandBits) & maxExponent);
const bExponent = @truncate(ZExp, (@bitCast(Z, b) >> significandBits) & maxExponent);
const productSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
var aSignificand: ZSignificand = @intCast(ZSignificand, @bitCast(Z, a) & significandMask);
var bSignificand: ZSignificand = @intCast(ZSignificand, @bitCast(Z, b) & significandMask);
var scale: i32 = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
const aAbs: Z = @bitCast(Z, a) & absMask;
const bAbs: Z = @bitCast(Z, b) & absMask;
// NaN * anything = qNaN
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
// anything * NaN = qNaN
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
if (aAbs == infRep) {
// infinity * non-zero = +/- infinity
if (bAbs != 0) {
return @bitCast(T, aAbs | productSign);
} else {
// infinity * zero = NaN
return @bitCast(T, qnanRep);
}
}
if (bAbs == infRep) {
//? non-zero * infinity = +/- infinity
if (aAbs != 0) {
return @bitCast(T, bAbs | productSign);
} else {
// zero * infinity = NaN
return @bitCast(T, qnanRep);
}
}
// zero * anything = +/- zero
if (aAbs == 0) return @bitCast(T, productSign);
// anything * zero = +/- zero
if (bAbs == 0) return @bitCast(T, productSign);
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < minNormalRep) scale += normalize(T, &aSignificand);
if (bAbs < minNormalRep) scale += normalize(T, &bSignificand);
}
// Or in the implicit significand bit. (If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.)
aSignificand |= integerBit;
bSignificand |= integerBit;
// Get the significand of a*b. Before multiplying the significands, shift
// one of them left to left-align it in the field. Thus, the product will
// have (exponentBits + 2) integral digits, all but two of which must be
// zero. Normalizing this result is just a conditional left-shift by one
// and bumping the exponent accordingly.
var productHi: ZSignificand = undefined;
var productLo: ZSignificand = undefined;
const left_align_shift = ZSignificandBits - fractionalBits - 1;
common.wideMultiply(ZSignificand, aSignificand, bSignificand << left_align_shift, &productHi, &productLo);
var productExponent: i32 = @intCast(i32, aExponent + bExponent) - exponentBias + scale;
// Normalize the significand, adjust exponent if needed.
if ((productHi & integerBit) != 0) {
productExponent +%= 1;
} else {
productHi = (productHi << 1) | (productLo >> (ZSignificandBits - 1));
productLo = productLo << 1;
}
// If we have overflowed the type, return +/- infinity.
if (productExponent >= maxExponent) return @bitCast(T, infRep | productSign);
var result: Z = undefined;
if (productExponent <= 0) {
// Result is denormal before rounding
//
// If the result is so small that it just underflows to zero, return
// a zero of the appropriate sign. Mathematically there is no need to
// handle this case separately, but we make it a special case to
// simplify the shift logic.
const shift: u32 = @truncate(u32, @as(Z, 1) -% @bitCast(u32, productExponent));
if (shift >= ZSignificandBits) return @bitCast(T, productSign);
// Otherwise, shift the significand of the result so that the round
// bit is the high bit of productLo.
const sticky = wideShrWithTruncation(ZSignificand, &productHi, &productLo, shift);
productLo |= @boolToInt(sticky);
result = productHi;
// We include the integer bit so that rounding will carry to the exponent,
// but it will be removed later if the result is still denormal
if (significandBits != fractionalBits) result |= integerBit;
} else {
// Result is normal before rounding; insert the exponent.
result = productHi & significandMask;
result |= @intCast(Z, productExponent) << significandBits;
}
// Final rounding. The final result may overflow to infinity, or underflow
// to zero, but those are the correct results in those cases. We use the
// default IEEE-754 round-to-nearest, ties-to-even rounding mode.
if (productLo > roundBit) result +%= 1;
if (productLo == roundBit) result +%= result & 1;
// Restore any explicit integer bit, if it was rounded off
if (significandBits != fractionalBits) {
if ((result >> significandBits) != 0) {
result |= integerBit;
} else {
result &= ~integerBit;
}
}
// Insert the sign of the result:
result |= productSign;
return @bitCast(T, result);
}
/// Returns `true` if the right shift is inexact (i.e. any bit shifted out is non-zero)
///
/// This is analogous to an shr version of `@shlWithOverflow`
fn wideShrWithTruncation(comptime Z: type, hi: *Z, lo: *Z, count: u32) bool {
@setRuntimeSafety(builtin.is_test);
const typeWidth = @typeInfo(Z).Int.bits;
const S = math.Log2Int(Z);
var inexact = false;
if (count < typeWidth) {
inexact = (lo.* << @intCast(S, typeWidth -% count)) != 0;
lo.* = (hi.* << @intCast(S, typeWidth -% count)) | (lo.* >> @intCast(S, count));
hi.* = hi.* >> @intCast(S, count);
} else if (count < 2 * typeWidth) {
inexact = (hi.* << @intCast(S, 2 * typeWidth -% count) | lo.*) != 0;
lo.* = hi.* >> @intCast(S, count -% typeWidth);
hi.* = 0;
} else {
inexact = (hi.* | lo.*) != 0;
lo.* = 0;
hi.* = 0;
}
return inexact;
}
fn normalize(comptime T: type, significand: *PowerOfTwoSignificandZ(T)) i32 {
const Z = PowerOfTwoSignificandZ(T);
const integerBit = @as(Z, 1) << math.floatFractionalBits(T);
const shift = @clz(significand.*) - @clz(integerBit);
significand.* <<= @intCast(math.Log2Int(Z), shift);
return @as(i32, 1) - shift;
}
/// Returns a power-of-two integer type that is large enough to contain
/// the significand of T, including an explicit integer bit
fn PowerOfTwoSignificandZ(comptime T: type) type {
const bits = math.ceilPowerOfTwoAssert(u16, math.floatFractionalBits(T) + 1);
return std.meta.Int(.unsigned, bits);
}
test {
_ = @import("mulf3_test.zig");
}