mirror of
https://github.com/ziglang/zig.git
synced 2024-11-27 23:52:31 +00:00
0d533433e2
This change also exposes some of the existing functions under both the PPC-style names symbols and the compiler-rt-style names, since Zig currently lowers softfloat calls to the latter.
205 lines
8.3 KiB
Zig
205 lines
8.3 KiB
Zig
const std = @import("std");
|
|
const math = std.math;
|
|
const builtin = @import("builtin");
|
|
const common = @import("./common.zig");
|
|
|
|
/// Ported from:
|
|
/// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc
|
|
pub inline fn mulf3(comptime T: type, a: T, b: T) T {
|
|
@setRuntimeSafety(builtin.is_test);
|
|
const typeWidth = @typeInfo(T).Float.bits;
|
|
const significandBits = math.floatMantissaBits(T);
|
|
const fractionalBits = math.floatFractionalBits(T);
|
|
const exponentBits = math.floatExponentBits(T);
|
|
|
|
const Z = std.meta.Int(.unsigned, typeWidth);
|
|
|
|
// ZSignificand is large enough to contain the significand, including an explicit integer bit
|
|
const ZSignificand = PowerOfTwoSignificandZ(T);
|
|
const ZSignificandBits = @typeInfo(ZSignificand).Int.bits;
|
|
|
|
const roundBit = (1 << (ZSignificandBits - 1));
|
|
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
|
|
const maxExponent = ((1 << exponentBits) - 1);
|
|
const exponentBias = (maxExponent >> 1);
|
|
|
|
const integerBit = (@as(ZSignificand, 1) << fractionalBits);
|
|
const quietBit = integerBit >> 1;
|
|
const significandMask = (@as(Z, 1) << significandBits) - 1;
|
|
|
|
const absMask = signBit - 1;
|
|
const qnanRep = @bitCast(Z, math.nan(T)) | quietBit;
|
|
const infRep = @bitCast(Z, math.inf(T));
|
|
const minNormalRep = @bitCast(Z, math.floatMin(T));
|
|
|
|
const ZExp = if (typeWidth >= 32) u32 else Z;
|
|
const aExponent = @truncate(ZExp, (@bitCast(Z, a) >> significandBits) & maxExponent);
|
|
const bExponent = @truncate(ZExp, (@bitCast(Z, b) >> significandBits) & maxExponent);
|
|
const productSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
|
|
|
|
var aSignificand: ZSignificand = @intCast(ZSignificand, @bitCast(Z, a) & significandMask);
|
|
var bSignificand: ZSignificand = @intCast(ZSignificand, @bitCast(Z, b) & significandMask);
|
|
var scale: i32 = 0;
|
|
|
|
// Detect if a or b is zero, denormal, infinity, or NaN.
|
|
if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
|
|
const aAbs: Z = @bitCast(Z, a) & absMask;
|
|
const bAbs: Z = @bitCast(Z, b) & absMask;
|
|
|
|
// NaN * anything = qNaN
|
|
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
|
|
// anything * NaN = qNaN
|
|
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
|
|
|
|
if (aAbs == infRep) {
|
|
// infinity * non-zero = +/- infinity
|
|
if (bAbs != 0) {
|
|
return @bitCast(T, aAbs | productSign);
|
|
} else {
|
|
// infinity * zero = NaN
|
|
return @bitCast(T, qnanRep);
|
|
}
|
|
}
|
|
|
|
if (bAbs == infRep) {
|
|
//? non-zero * infinity = +/- infinity
|
|
if (aAbs != 0) {
|
|
return @bitCast(T, bAbs | productSign);
|
|
} else {
|
|
// zero * infinity = NaN
|
|
return @bitCast(T, qnanRep);
|
|
}
|
|
}
|
|
|
|
// zero * anything = +/- zero
|
|
if (aAbs == 0) return @bitCast(T, productSign);
|
|
// anything * zero = +/- zero
|
|
if (bAbs == 0) return @bitCast(T, productSign);
|
|
|
|
// one or both of a or b is denormal, the other (if applicable) is a
|
|
// normal number. Renormalize one or both of a and b, and set scale to
|
|
// include the necessary exponent adjustment.
|
|
if (aAbs < minNormalRep) scale += normalize(T, &aSignificand);
|
|
if (bAbs < minNormalRep) scale += normalize(T, &bSignificand);
|
|
}
|
|
|
|
// Or in the implicit significand bit. (If we fell through from the
|
|
// denormal path it was already set by normalize( ), but setting it twice
|
|
// won't hurt anything.)
|
|
aSignificand |= integerBit;
|
|
bSignificand |= integerBit;
|
|
|
|
// Get the significand of a*b. Before multiplying the significands, shift
|
|
// one of them left to left-align it in the field. Thus, the product will
|
|
// have (exponentBits + 2) integral digits, all but two of which must be
|
|
// zero. Normalizing this result is just a conditional left-shift by one
|
|
// and bumping the exponent accordingly.
|
|
var productHi: ZSignificand = undefined;
|
|
var productLo: ZSignificand = undefined;
|
|
const left_align_shift = ZSignificandBits - fractionalBits - 1;
|
|
common.wideMultiply(ZSignificand, aSignificand, bSignificand << left_align_shift, &productHi, &productLo);
|
|
|
|
var productExponent: i32 = @intCast(i32, aExponent + bExponent) - exponentBias + scale;
|
|
|
|
// Normalize the significand, adjust exponent if needed.
|
|
if ((productHi & integerBit) != 0) {
|
|
productExponent +%= 1;
|
|
} else {
|
|
productHi = (productHi << 1) | (productLo >> (ZSignificandBits - 1));
|
|
productLo = productLo << 1;
|
|
}
|
|
|
|
// If we have overflowed the type, return +/- infinity.
|
|
if (productExponent >= maxExponent) return @bitCast(T, infRep | productSign);
|
|
|
|
var result: Z = undefined;
|
|
if (productExponent <= 0) {
|
|
// Result is denormal before rounding
|
|
//
|
|
// If the result is so small that it just underflows to zero, return
|
|
// a zero of the appropriate sign. Mathematically there is no need to
|
|
// handle this case separately, but we make it a special case to
|
|
// simplify the shift logic.
|
|
const shift: u32 = @truncate(u32, @as(Z, 1) -% @bitCast(u32, productExponent));
|
|
if (shift >= ZSignificandBits) return @bitCast(T, productSign);
|
|
|
|
// Otherwise, shift the significand of the result so that the round
|
|
// bit is the high bit of productLo.
|
|
const sticky = wideShrWithTruncation(ZSignificand, &productHi, &productLo, shift);
|
|
productLo |= @boolToInt(sticky);
|
|
result = productHi;
|
|
|
|
// We include the integer bit so that rounding will carry to the exponent,
|
|
// but it will be removed later if the result is still denormal
|
|
if (significandBits != fractionalBits) result |= integerBit;
|
|
} else {
|
|
// Result is normal before rounding; insert the exponent.
|
|
result = productHi & significandMask;
|
|
result |= @intCast(Z, productExponent) << significandBits;
|
|
}
|
|
|
|
// Final rounding. The final result may overflow to infinity, or underflow
|
|
// to zero, but those are the correct results in those cases. We use the
|
|
// default IEEE-754 round-to-nearest, ties-to-even rounding mode.
|
|
if (productLo > roundBit) result +%= 1;
|
|
if (productLo == roundBit) result +%= result & 1;
|
|
|
|
// Restore any explicit integer bit, if it was rounded off
|
|
if (significandBits != fractionalBits) {
|
|
if ((result >> significandBits) != 0) {
|
|
result |= integerBit;
|
|
} else {
|
|
result &= ~integerBit;
|
|
}
|
|
}
|
|
|
|
// Insert the sign of the result:
|
|
result |= productSign;
|
|
|
|
return @bitCast(T, result);
|
|
}
|
|
|
|
/// Returns `true` if the right shift is inexact (i.e. any bit shifted out is non-zero)
|
|
///
|
|
/// This is analogous to an shr version of `@shlWithOverflow`
|
|
fn wideShrWithTruncation(comptime Z: type, hi: *Z, lo: *Z, count: u32) bool {
|
|
@setRuntimeSafety(builtin.is_test);
|
|
const typeWidth = @typeInfo(Z).Int.bits;
|
|
const S = math.Log2Int(Z);
|
|
var inexact = false;
|
|
if (count < typeWidth) {
|
|
inexact = (lo.* << @intCast(S, typeWidth -% count)) != 0;
|
|
lo.* = (hi.* << @intCast(S, typeWidth -% count)) | (lo.* >> @intCast(S, count));
|
|
hi.* = hi.* >> @intCast(S, count);
|
|
} else if (count < 2 * typeWidth) {
|
|
inexact = (hi.* << @intCast(S, 2 * typeWidth -% count) | lo.*) != 0;
|
|
lo.* = hi.* >> @intCast(S, count -% typeWidth);
|
|
hi.* = 0;
|
|
} else {
|
|
inexact = (hi.* | lo.*) != 0;
|
|
lo.* = 0;
|
|
hi.* = 0;
|
|
}
|
|
return inexact;
|
|
}
|
|
|
|
fn normalize(comptime T: type, significand: *PowerOfTwoSignificandZ(T)) i32 {
|
|
const Z = PowerOfTwoSignificandZ(T);
|
|
const integerBit = @as(Z, 1) << math.floatFractionalBits(T);
|
|
|
|
const shift = @clz(significand.*) - @clz(integerBit);
|
|
significand.* <<= @intCast(math.Log2Int(Z), shift);
|
|
return @as(i32, 1) - shift;
|
|
}
|
|
|
|
/// Returns a power-of-two integer type that is large enough to contain
|
|
/// the significand of T, including an explicit integer bit
|
|
fn PowerOfTwoSignificandZ(comptime T: type) type {
|
|
const bits = math.ceilPowerOfTwoAssert(u16, math.floatFractionalBits(T) + 1);
|
|
return std.meta.Int(.unsigned, bits);
|
|
}
|
|
|
|
test {
|
|
_ = @import("mulf3_test.zig");
|
|
}
|