zig/std/math/fmod.zig
Marc Tiehuis 4c16f9a3c3 Add math library
This covers the majority of the functions as covered by the C99
specification for a math library.

Code is adapted primarily from musl libc, with the pow and standard
trigonometric functions adapted from the Go stdlib.

Changes:

 - Remove assert expose in index and import as needed.
 - Add float log function and merge with existing base 2 integer
   implementation.

See https://github.com/tiehuis/zig-fmath.
See #374.
2017-06-16 20:32:31 +12:00

191 lines
4.2 KiB
Zig

const math = @import("index.zig");
const assert = @import("../debug.zig").assert;
pub fn fmod(comptime T: type, x: T, y: T) -> T {
switch (T) {
f32 => @inlineCall(fmod32, x, y),
f64 => @inlineCall(fmod64, x, y),
else => @compileError("fmod not implemented for " ++ @typeName(T)),
}
}
fn fmod32(x: f32, y: f32) -> f32 {
var ux = @bitCast(u32, x);
var uy = @bitCast(u32, y);
var ex = i32(ux >> 23) & 0xFF;
var ey = i32(ux >> 23) & 0xFF;
const sx = ux & 0x80000000;
if (uy << 1 == 0 or math.isNan(y) or ex == 0xFF) {
return (x * y) / (x * y);
}
if (ux << 1 <= uy << 1) {
if (ux << 1 == uy << 1) {
return 0 * x;
} else {
return x;
}
}
// normalize x and y
if (ex == 0) {
var i = ux << 9;
while (i >> 31 == 0) : (i <<= 1) {
ex -= 1;
}
ux <<= u32(-ex + 1);
} else {
ux &= @maxValue(u32) >> 9;
ux |= 1 << 23;
}
if (ey == 0) {
var i = uy << 9;
while (i >> 31 == 0) : (i <<= 1) {
ey -= 1;
}
uy <<= u32(-ey + 1);
} else {
uy &= @maxValue(u32) >> 9;
uy |= 1 << 23;
}
// x mod y
while (ex > ey) : (ex -= 1) {
const i = ux - uy;
if (i >> 31 == 0) {
if (i == 0) {
return 0 * x;
}
ux = i;
}
ux <<= 1;
}
{
const i = ux - uy;
if (i >> 31 == 0) {
if (i == 0) {
return 0 * x;
}
ux = i;
}
}
while (ux >> 23 == 0) : (ux <<= 1) {
ex -= 1;
}
// scale result up
if (ex > 0) {
ux -= 1 << 23;
ux |= u32(ex) << 23;
} else {
ux >>= u32(-ex + 1);
}
ux |= sx;
@bitCast(f32, ux)
}
fn fmod64(x: f64, y: f64) -> f64 {
var ux = @bitCast(u64, x);
var uy = @bitCast(u64, y);
var ex = i32(ux >> 52) & 0x7FF;
var ey = i32(ux >> 52) & 0x7FF;
const sx = ux >> 63;
if (uy << 1 == 0 or math.isNan(y) or ex == 0x7FF) {
return (x * y) / (x * y);
}
if (ux << 1 <= uy << 1) {
if (ux << 1 == uy << 1) {
return 0 * x;
} else {
return x;
}
}
// normalize x and y
if (ex == 0) {
var i = ux << 12;
while (i >> 63 == 0) : (i <<= 1) {
ex -= 1;
}
ux <<= u64(-ex + 1);
} else {
ux &= @maxValue(u64) >> 12;
ux |= 1 << 52;
}
if (ey == 0) {
var i = uy << 12;
while (i >> 63 == 0) : (i <<= 1) {
ey -= 1;
}
uy <<= u64(-ey + 1);
} else {
uy &= @maxValue(u64) >> 12;
uy |= 1 << 52;
}
// x mod y
while (ex > ey) : (ex -= 1) {
const i = ux - uy;
if (i >> 63 == 0) {
if (i == 0) {
return 0 * x;
}
ux = i;
}
ux <<= 1;
}
{
const i = ux - uy;
if (i >> 63 == 0) {
if (i == 0) {
return 0 * x;
}
ux = i;
}
}
while (ux >> 52 == 0) : (ux <<= 1) {
ex -= 1;
}
// scale result up
if (ex > 0) {
ux -= 1 << 52;
ux |= u64(ex) << 52;
} else {
ux >>= u64(-ex + 1);
}
ux |= sx << 63;
@bitCast(f64, ux)
}
// duplicate symbol clash with `fmod` test name
test "fmod_" {
assert(fmod(f32, 1.3, 2.5) == fmod32(1.3, 2.5));
assert(fmod(f64, 1.3, 2.5) == fmod64(1.3, 2.5));
}
test "fmod32" {
const epsilon = 0.000001;
assert(math.approxEq(f32, fmod32(5.2, 2.0), 1.2, epsilon));
assert(math.approxEq(f32, fmod32(18.5, 4.2), 1.7, epsilon));
assert(math.approxEq(f32, fmod32(23, 48.34), 23.0, epsilon));
assert(math.approxEq(f32, fmod32(123.340890, 2398.2314), 123.340889, epsilon));
}
test "fmod64" {
const epsilon = 0.000001;
assert(math.approxEq(f64, fmod64(5.2, 2.0), 1.2, epsilon));
assert(math.approxEq(f64, fmod64(18.5, 4.2), 1.7, epsilon));
assert(math.approxEq(f64, fmod64(23, 48.34), 23.0, epsilon));
assert(math.approxEq(f64, fmod64(123.340890, 2398.2314), 123.340889, epsilon));
}