zig/lib/std/array_list.zig
2022-11-29 23:30:38 -07:00

1611 lines
61 KiB
Zig

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;
/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each method call see `ArrayListUnmanaged`.
pub fn ArrayList(comptime T: type) type {
return ArrayListAligned(T, null);
}
/// A contiguous, growable list of arbitrarily aligned items in memory.
/// This is a wrapper around an array of T values aligned to `alignment`-byte
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
/// Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each method call see `ArrayListAlignedUnmanaged`.
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAligned(T, null);
}
}
return struct {
const Self = @This();
/// Contents of the list. Pointers to elements in this slice are
/// **invalid after resizing operations** on the ArrayList, unless the
/// operation explicitly either: (1) states otherwise or (2) lists the
/// invalidated pointers.
///
/// The allocator used determines how element pointers are
/// invalidated, so the behavior may vary between lists. To avoid
/// illegal behavior, take into account the above paragraph plus the
/// explicit statements given in each method.
items: Slice,
/// How many T values this list can hold without allocating
/// additional memory.
capacity: usize,
allocator: Allocator,
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub fn SentinelSlice(comptime s: T) type {
return if (alignment) |a| ([:s]align(a) T) else [:s]T;
}
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn init(allocator: Allocator) Self {
return Self{
.items = &[_]T{},
.capacity = 0,
.allocator = allocator,
};
}
/// Initialize with capacity to hold at least `num` elements.
/// The resulting capacity is likely to be equal to `num`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
var self = Self.init(allocator);
try self.ensureTotalCapacityPrecise(num);
return self;
}
/// Release all allocated memory.
pub fn deinit(self: Self) void {
if (@sizeOf(T) > 0) {
self.allocator.free(self.allocatedSlice());
}
}
/// ArrayList takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSlice(allocator: Allocator, slice: Slice) Self {
return Self{
.items = slice,
.capacity = slice.len,
.allocator = allocator,
};
}
/// Initializes an ArrayListUnmanaged with the `items` and `capacity` fields
/// of this ArrayList. Empties this ArrayList.
pub fn moveToUnmanaged(self: *Self) ArrayListAlignedUnmanaged(T, alignment) {
const allocator = self.allocator;
const result = .{ .items = self.items, .capacity = self.capacity };
self.* = init(allocator);
return result;
}
/// The caller owns the returned memory. Empties this ArrayList,
/// however its capacity may or may not be cleared and deinit() is
/// still required to clean up its memory.
pub fn toOwnedSlice(self: *Self) Allocator.Error!Slice {
const allocator = self.allocator;
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, self.items.len)) {
const result = self.items;
self.* = init(allocator);
return result;
}
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
mem.copy(T, new_memory, self.items);
@memset(@ptrCast([*]u8, self.items.ptr), undefined, self.items.len * @sizeOf(T));
self.items.len = 0;
return new_memory;
}
/// The caller owns the returned memory. Empties this ArrayList.
pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
try self.ensureTotalCapacityPrecise(self.items.len + 1);
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice();
return result[0 .. result.len - 1 :sentinel];
}
/// Creates a copy of this ArrayList, using the same allocator.
pub fn clone(self: *Self) Allocator.Error!Self {
var cloned = try Self.initCapacity(self.allocator, self.capacity);
cloned.appendSliceAssumeCapacity(self.items);
return cloned;
}
/// Insert `item` at index `n` by moving `list[n .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insert(self: *Self, n: usize, item: T) Allocator.Error!void {
try self.ensureUnusedCapacity(1);
self.items.len += 1;
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
self.items[n] = item;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insertSlice(self: *Self, i: usize, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.items.len += items.len;
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
mem.copy(T, self.items[i .. i + items.len], items);
}
/// Replace range of elements `list[start..start+len]` with `new_items`.
/// Grows list if `len < new_items.len`.
/// Shrinks list if `len > new_items.len`.
/// Invalidates pointers if this ArrayList is resized.
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
const after_range = start + len;
const range = self.items[start..after_range];
if (range.len == new_items.len)
mem.copy(T, range, new_items)
else if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
mem.copy(T, range, first);
try self.insertSlice(after_range, rest);
} else {
mem.copy(T, range, new_items);
const after_subrange = start + new_items.len;
for (self.items[after_range..]) |item, i| {
self.items[after_subrange..][i] = item;
}
self.items.len -= len - new_items.len;
}
}
/// Extend the list by 1 element. Allocates more memory as necessary.
/// Invalidates pointers if additional memory is needed.
pub fn append(self: *Self, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne();
new_item_ptr.* = item;
}
/// Extend the list by 1 element, but assert `self.capacity`
/// is sufficient to hold an additional item. **Does not**
/// invalidate pointers.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i`, shift elements after index
/// `i` forward, and return the removed element.
/// Asserts the array has at least one item.
/// Invalidates pointers to end of list.
/// This operation is O(N).
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.items.len - 1;
if (newlen == i) return self.pop();
const old_item = self.items[i];
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
self.items[newlen] = undefined;
self.items.len = newlen;
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// This operation is O(1).
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
/// Invalidates pointers if additional memory is needed.
pub fn appendSlice(self: *Self, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list, asserting the capacity is already
/// enough to store the new items. **Does not** invalidate pointers.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
mem.copy(T, self.items[old_len..], items);
}
/// Append an unaligned slice of items to the list. Allocates more
/// memory as necessary. Only call this function if calling
/// `appendSlice` instead would be a compile error.
/// Invalidates pointers if additional memory is needed.
pub fn appendUnalignedSlice(self: *Self, items: []align(1) const T) Allocator.Error!void {
try self.ensureUnusedCapacity(items.len);
self.appendUnalignedSliceAssumeCapacity(items);
}
/// Append the slice of items to the list, asserting the capacity is already
/// enough to store the new items. **Does not** invalidate pointers.
/// Only call this function if calling `appendSliceAssumeCapacity` instead
/// would be a compile error.
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(
@ptrCast([*]align(@alignOf(T)) u8, self.items.ptr + old_len),
@ptrCast([*]const u8, items.ptr),
items.len * @sizeOf(T),
);
}
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
/// Same as `append` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
/// Invalidates pointers if additional memory is needed.
fn appendWrite(self: *Self, m: []const u8) Allocator.Error!usize {
try self.appendSlice(m);
return m.len;
}
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
/// Invalidates pointers if additional memory is needed.
pub fn appendNTimes(self: *Self, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(self.items.len + n);
mem.set(T, self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// Asserts the capacity is enough. **Does not** invalidate pointers.
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
mem.set(T, self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list's length to `new_len`.
/// Does not initialize added items if any.
/// Invalidates pointers if additional memory is needed.
pub fn resize(self: *Self, new_len: usize) Allocator.Error!void {
try self.ensureTotalCapacity(new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
pub fn shrinkAndFree(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
if (@sizeOf(T) == 0) {
self.items.len = new_len;
return;
}
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, new_len)) {
self.capacity = new_len;
self.items.len = new_len;
return;
}
const new_memory = self.allocator.alignedAlloc(T, alignment, new_len) catch |e| switch (e) {
error.OutOfMemory => {
// No problem, capacity is still correct then.
self.items.len = new_len;
return;
},
};
mem.copy(T, new_memory, self.items);
self.allocator.free(old_memory);
self.items = new_memory;
self.capacity = new_memory.len;
}
/// Reduce length to `new_len`.
/// Invalidates pointers for the elements `items[new_len..]`.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(self: *Self) void {
self.items.len = 0;
}
/// Invalidates all element pointers.
pub fn clearAndFree(self: *Self) void {
self.allocator.free(self.allocatedSlice());
self.items.len = 0;
self.capacity = 0;
}
/// Modify the array so that it can hold at least `new_capacity` items.
/// Invalidates pointers if additional memory is needed.
pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
var better_capacity = self.capacity;
while (true) {
better_capacity +|= better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
return self.ensureTotalCapacityPrecise(better_capacity);
}
/// Modify the array so that it can hold at least `new_capacity` items.
/// Like `ensureTotalCapacity`, but the resulting capacity is much more likely
/// (but not guaranteed) to be equal to `new_capacity`.
/// Invalidates pointers if additional memory is needed.
pub fn ensureTotalCapacityPrecise(self: *Self, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
} else {
const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
mem.copy(T, new_memory, self.items);
self.allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
}
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates pointers if additional memory is needed.
pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) Allocator.Error!void {
return self.ensureTotalCapacity(self.items.len + additional_count);
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values. **Does not** invalidate pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list resized.
pub fn addOne(self: *Self) Allocator.Error!*T {
try self.ensureTotalCapacity(self.items.len + 1);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is already space for the new item without allocating more.
/// The returned pointer becomes invalid when the list is resized.
/// **Does not** invalidate element pointers.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsArray(self: *Self, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(self.items.len + n);
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate element pointers.
/// The returned pointer becomes invalid when the list is resized.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Asserts the list has at least one item.
/// Invalidates pointers to the removed element.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list, or
/// return `null` if list is empty.
/// Invalidates pointers to the removed element, if any.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
/// Returns a slice of all the items plus the extra capacity, whose memory
/// contents are `undefined`.
pub fn allocatedSlice(self: Self) Slice {
// For a nicer API, `items.len` is the length, not the capacity.
// This requires "unsafe" slicing.
return self.items.ptr[0..self.capacity];
}
/// Returns a slice of only the extra capacity after items.
/// This can be useful for writing directly into an ArrayList.
/// Note that such an operation must be followed up with a direct
/// modification of `self.items.len`.
pub fn unusedCapacitySlice(self: Self) Slice {
return self.allocatedSlice()[self.items.len..];
}
};
}
/// An ArrayList, but the allocator is passed as a parameter to the relevant functions
/// rather than stored in the struct itself. The same allocator **must** be used throughout
/// the entire lifetime of an ArrayListUnmanaged. Initialize directly or with
/// `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`.
pub fn ArrayListUnmanaged(comptime T: type) type {
return ArrayListAlignedUnmanaged(T, null);
}
/// An ArrayListAligned, but the allocator is passed as a parameter to the relevant
/// functions rather than stored in the struct itself. The same allocator **must**
/// be used throughout the entire lifetime of an ArrayListAlignedUnmanaged.
/// Initialize directly or with `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`.
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAlignedUnmanaged(T, null);
}
}
return struct {
const Self = @This();
/// Contents of the list. Pointers to elements in this slice are
/// **invalid after resizing operations** on the ArrayList, unless the
/// operation explicitly either: (1) states otherwise or (2) lists the
/// invalidated pointers.
///
/// The allocator used determines how element pointers are
/// invalidated, so the behavior may vary between lists. To avoid
/// illegal behavior, take into account the above paragraph plus the
/// explicit statements given in each method.
items: Slice = &[_]T{},
/// How many T values this list can hold without allocating
/// additional memory.
capacity: usize = 0,
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub fn SentinelSlice(comptime s: T) type {
return if (alignment) |a| ([:s]align(a) T) else [:s]T;
}
/// Initialize with capacity to hold at least num elements.
/// The resulting capacity is likely to be equal to `num`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
var self = Self{};
try self.ensureTotalCapacityPrecise(allocator, num);
return self;
}
/// Release all allocated memory.
pub fn deinit(self: *Self, allocator: Allocator) void {
allocator.free(self.allocatedSlice());
self.* = undefined;
}
/// Convert this list into an analogous memory-managed one.
/// The returned list has ownership of the underlying memory.
pub fn toManaged(self: *Self, allocator: Allocator) ArrayListAligned(T, alignment) {
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
}
/// The caller owns the returned memory. Empties this ArrayList,
/// however its capacity may or may not be cleared and deinit() is
/// still required to clean up its memory.
pub fn toOwnedSlice(self: *Self, allocator: Allocator) Allocator.Error!Slice {
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, self.items.len)) {
const result = self.items;
self.* = .{};
return result;
}
const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
mem.copy(T, new_memory, self.items);
@memset(@ptrCast([*]u8, self.items.ptr), undefined, self.items.len * @sizeOf(T));
self.items.len = 0;
return new_memory;
}
/// The caller owns the returned memory. ArrayList becomes empty.
pub fn toOwnedSliceSentinel(self: *Self, allocator: Allocator, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
try self.ensureTotalCapacityPrecise(allocator, self.items.len + 1);
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice(allocator);
return result[0 .. result.len - 1 :sentinel];
}
/// Creates a copy of this ArrayList.
pub fn clone(self: *Self, allocator: Allocator) Allocator.Error!Self {
var cloned = try Self.initCapacity(allocator, self.capacity);
cloned.appendSliceAssumeCapacity(self.items);
return cloned;
}
/// Insert `item` at index `n`. Moves `list[n .. list.len]`
/// to higher indices to make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insert(self: *Self, allocator: Allocator, n: usize, item: T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, 1);
self.items.len += 1;
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
self.items[n] = item;
}
/// Insert slice `items` at index `i`. Moves `list[i .. list.len]` to
/// higher indicices make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insertSlice(self: *Self, allocator: Allocator, i: usize, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.items.len += items.len;
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
mem.copy(T, self.items[i .. i + items.len], items);
}
/// Replace range of elements `list[start..start+len]` with `new_items`
/// Grows list if `len < new_items.len`.
/// Shrinks list if `len > new_items.len`
/// Invalidates pointers if this ArrayList is resized.
pub fn replaceRange(self: *Self, allocator: Allocator, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
var managed = self.toManaged(allocator);
try managed.replaceRange(start, len, new_items);
self.* = managed.moveToUnmanaged();
}
/// Extend the list by 1 element. Allocates more memory as necessary.
/// Invalidates pointers if additional memory is needed.
pub fn append(self: *Self, allocator: Allocator, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne(allocator);
new_item_ptr.* = item;
}
/// Extend the list by 1 element, but asserting `self.capacity`
/// is sufficient to hold an additional item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i` from the list and return its value.
/// Asserts the array has at least one item. Invalidates pointers to
/// last element.
/// This operation is O(N).
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.items.len - 1;
if (newlen == i) return self.pop();
const old_item = self.items[i];
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
self.items[newlen] = undefined;
self.items.len = newlen;
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// Invalidates pointers to last element.
/// This operation is O(1).
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
/// Invalidates pointers if additional memory is needed.
pub fn appendSlice(self: *Self, allocator: Allocator, items: []const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list, asserting the capacity is enough
/// to store the new items.
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
mem.copy(T, self.items[old_len..], items);
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary. Only call this function if a call to `appendSlice` instead would
/// be a compile error.
/// Invalidates pointers if additional memory is needed.
pub fn appendUnalignedSlice(self: *Self, allocator: Allocator, items: []align(1) const T) Allocator.Error!void {
try self.ensureUnusedCapacity(allocator, items.len);
self.appendUnalignedSliceAssumeCapacity(items);
}
/// Append an unaligned slice of items to the list, asserting the capacity is enough
/// to store the new items. Only call this function if a call to `appendSliceAssumeCapacity`
/// instead would be a compile error.
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
assert(new_len <= self.capacity);
self.items.len = new_len;
@memcpy(
@ptrCast([*]align(@alignOf(T)) u8, self.items.ptr + old_len),
@ptrCast([*]const u8, items.ptr),
items.len * @sizeOf(T),
);
}
pub const WriterContext = struct {
self: *Self,
allocator: Allocator,
};
pub const Writer = if (T != u8)
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(WriterContext, error{OutOfMemory}, appendWrite);
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self, allocator: Allocator) Writer {
return .{ .context = .{ .self = self, .allocator = allocator } };
}
/// Same as `append` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
/// Invalidates pointers if additional memory is needed.
fn appendWrite(context: WriterContext, m: []const u8) Allocator.Error!usize {
try context.self.appendSlice(context.allocator, m);
return m.len;
}
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
/// Invalidates pointers if additional memory is needed.
pub fn appendNTimes(self: *Self, allocator: Allocator, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(allocator, self.items.len + n);
mem.set(T, self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// **Does not** invalidate pointers.
/// Asserts the capacity is enough.
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
mem.set(T, self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list's length to `new_len`.
/// Does not initialize added items, if any.
/// Invalidates pointers if additional memory is needed.
pub fn resize(self: *Self, allocator: Allocator, new_len: usize) Allocator.Error!void {
try self.ensureTotalCapacity(allocator, new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
pub fn shrinkAndFree(self: *Self, allocator: Allocator, new_len: usize) void {
assert(new_len <= self.items.len);
if (@sizeOf(T) == 0) {
self.items.len = new_len;
return;
}
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, new_len)) {
self.capacity = new_len;
self.items.len = new_len;
return;
}
const new_memory = allocator.alignedAlloc(T, alignment, new_len) catch |e| switch (e) {
error.OutOfMemory => {
// No problem, capacity is still correct then.
self.items.len = new_len;
return;
},
};
mem.copy(T, new_memory, self.items);
allocator.free(old_memory);
self.items = new_memory;
self.capacity = new_memory.len;
}
/// Reduce length to `new_len`.
/// Invalidates pointers to elements `items[new_len..]`.
/// Keeps capacity the same.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
/// Invalidates all element pointers.
pub fn clearRetainingCapacity(self: *Self) void {
self.items.len = 0;
}
/// Invalidates all element pointers.
pub fn clearAndFree(self: *Self, allocator: Allocator) void {
allocator.free(self.allocatedSlice());
self.items.len = 0;
self.capacity = 0;
}
/// Modify the array so that it can hold at least `new_capacity` items.
/// Invalidates pointers if additional memory is needed.
pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (self.capacity >= new_capacity) return;
var better_capacity = self.capacity;
while (true) {
better_capacity +|= better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
return self.ensureTotalCapacityPrecise(allocator, better_capacity);
}
/// Modify the array so that it can hold at least `new_capacity` items.
/// Like `ensureTotalCapacity`, but the resulting capacity is much more likely
/// (but not guaranteed) to be equal to `new_capacity`.
/// Invalidates pointers if additional memory is needed.
pub fn ensureTotalCapacityPrecise(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (@sizeOf(T) == 0) {
self.capacity = math.maxInt(usize);
return;
}
if (self.capacity >= new_capacity) return;
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
} else {
const new_memory = try allocator.alignedAlloc(T, alignment, new_capacity);
mem.copy(T, new_memory, self.items);
allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
}
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates pointers if additional memory is needed.
pub fn ensureUnusedCapacity(
self: *Self,
allocator: Allocator,
additional_count: usize,
) Allocator.Error!void {
return self.ensureTotalCapacity(allocator, self.items.len + additional_count);
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values.
/// **Does not** invalidate pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list resized.
pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T {
const newlen = self.items.len + 1;
try self.ensureTotalCapacity(allocator, newlen);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate pointers.
/// The returned pointer becomes invalid when the list resized.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// The returned pointer becomes invalid when the list is resized.
pub fn addManyAsArray(self: *Self, allocator: Allocator, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(allocator, self.items.len + n);
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate pointers.
/// The returned pointer becomes invalid when the list is resized.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Asserts the list has at least one item.
/// Invalidates pointers to last element.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list.
/// If the list is empty, returns `null`.
/// Invalidates pointers to last element.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
/// For a nicer API, `items.len` is the length, not the capacity.
/// This requires "unsafe" slicing.
pub fn allocatedSlice(self: Self) Slice {
return self.items.ptr[0..self.capacity];
}
/// Returns a slice of only the extra capacity after items.
/// This can be useful for writing directly into an ArrayList.
/// Note that such an operation must be followed up with a direct
/// modification of `self.items.len`.
pub fn unusedCapacitySlice(self: Self) Slice {
return self.allocatedSlice()[self.items.len..];
}
};
}
test "std.ArrayList/ArrayListUnmanaged.init" {
{
var list = ArrayList(i32).init(testing.allocator);
defer list.deinit();
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity == 0);
}
{
var list = ArrayListUnmanaged(i32){};
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity == 0);
}
}
test "std.ArrayList/ArrayListUnmanaged.initCapacity" {
const a = testing.allocator;
{
var list = try ArrayList(i8).initCapacity(a, 200);
defer list.deinit();
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity >= 200);
}
{
var list = try ArrayListUnmanaged(i8).initCapacity(a, 200);
defer list.deinit(a);
try testing.expect(list.items.len == 0);
try testing.expect(list.capacity >= 200);
}
}
test "std.ArrayList/ArrayListUnmanaged.clone" {
const a = testing.allocator;
{
var array = ArrayList(i32).init(a);
try array.append(-1);
try array.append(3);
try array.append(5);
const cloned = try array.clone();
defer cloned.deinit();
try testing.expectEqualSlices(i32, array.items, cloned.items);
try testing.expectEqual(array.allocator, cloned.allocator);
try testing.expect(cloned.capacity >= array.capacity);
array.deinit();
try testing.expectEqual(@as(i32, -1), cloned.items[0]);
try testing.expectEqual(@as(i32, 3), cloned.items[1]);
try testing.expectEqual(@as(i32, 5), cloned.items[2]);
}
{
var array = ArrayListUnmanaged(i32){};
try array.append(a, -1);
try array.append(a, 3);
try array.append(a, 5);
var cloned = try array.clone(a);
defer cloned.deinit(a);
try testing.expectEqualSlices(i32, array.items, cloned.items);
try testing.expect(cloned.capacity >= array.capacity);
array.deinit(a);
try testing.expectEqual(@as(i32, -1), cloned.items[0]);
try testing.expectEqual(@as(i32, 3), cloned.items[1]);
try testing.expectEqual(@as(i32, 5), cloned.items[2]);
}
}
test "std.ArrayList/ArrayListUnmanaged.basic" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(@intCast(i32, i + 1)) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
try testing.expect(list.items[i] == @intCast(i32, i + 1));
}
}
for (list.items) |v, i| {
try testing.expect(v == @intCast(i32, i + 1));
}
try testing.expect(list.pop() == 10);
try testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 3);
try testing.expect(list.pop() == 2);
try testing.expect(list.pop() == 1);
try testing.expect(list.items.len == 9);
var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
list.appendUnalignedSlice(&unaligned) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 6);
try testing.expect(list.pop() == 5);
try testing.expect(list.pop() == 4);
try testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{}) catch unreachable;
try testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
try testing.expect(list.pop() == 42);
try testing.expect(list.pop() == 33);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(a, @intCast(i32, i + 1)) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
try testing.expect(list.items[i] == @intCast(i32, i + 1));
}
}
for (list.items) |v, i| {
try testing.expect(v == @intCast(i32, i + 1));
}
try testing.expect(list.pop() == 10);
try testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 3);
try testing.expect(list.pop() == 2);
try testing.expect(list.pop() == 1);
try testing.expect(list.items.len == 9);
var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
list.appendUnalignedSlice(a, &unaligned) catch unreachable;
try testing.expect(list.items.len == 12);
try testing.expect(list.pop() == 6);
try testing.expect(list.pop() == 5);
try testing.expect(list.pop() == 4);
try testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{}) catch unreachable;
try testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
try testing.expect(list.pop() == 42);
try testing.expect(list.pop() == 33);
}
}
test "std.ArrayList/ArrayListUnmanaged.appendNTimes" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendNTimes(2, 10);
try testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
try testing.expectEqual(@as(i32, 2), element);
}
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.appendNTimes(a, 2, 10);
try testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
try testing.expectEqual(@as(i32, 2), element);
}
}
}
test "std.ArrayList/ArrayListUnmanaged.appendNTimes with failing allocator" {
const a = testing.failing_allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10));
}
}
test "std.ArrayList/ArrayListUnmanaged.orderedRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
try testing.expectEqual(@as(i32, 5), list.items[3]);
try testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
try testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(i32, 2), list.items[0]);
try testing.expectEqual(@as(usize, 4), list.items.len);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
try testing.expectEqual(@as(i32, 5), list.items[3]);
try testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
try testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
try testing.expectEqual(@as(i32, 2), list.items[0]);
try testing.expectEqual(@as(usize, 4), list.items.len);
}
}
test "std.ArrayList/ArrayListUnmanaged.swapRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
try testing.expect(list.swapRemove(3) == 4);
try testing.expect(list.items[3] == 7);
try testing.expect(list.items.len == 6);
//remove from end
try testing.expect(list.swapRemove(5) == 6);
try testing.expect(list.items.len == 5);
//remove from front
try testing.expect(list.swapRemove(0) == 1);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items.len == 4);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
try testing.expect(list.swapRemove(3) == 4);
try testing.expect(list.items[3] == 7);
try testing.expect(list.items.len == 6);
//remove from end
try testing.expect(list.swapRemove(5) == 6);
try testing.expect(list.items.len == 5);
//remove from front
try testing.expect(list.swapRemove(0) == 1);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items.len == 4);
}
}
test "std.ArrayList/ArrayListUnmanaged.insert" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.insert(0, 5);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items[1] == 1);
try testing.expect(list.items[2] == 2);
try testing.expect(list.items[3] == 3);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.insert(a, 0, 5);
try testing.expect(list.items[0] == 5);
try testing.expect(list.items[1] == 1);
try testing.expect(list.items[2] == 2);
try testing.expect(list.items[3] == 3);
}
}
test "std.ArrayList/ArrayListUnmanaged.insertSlice" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.insertSlice(1, &[_]i32{ 9, 8 });
try testing.expect(list.items[0] == 1);
try testing.expect(list.items[1] == 9);
try testing.expect(list.items[2] == 8);
try testing.expect(list.items[3] == 2);
try testing.expect(list.items[4] == 3);
try testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(0, items[0..0]);
try testing.expect(list.items.len == 6);
try testing.expect(list.items[0] == 1);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.insertSlice(a, 1, &[_]i32{ 9, 8 });
try testing.expect(list.items[0] == 1);
try testing.expect(list.items[1] == 9);
try testing.expect(list.items[2] == 8);
try testing.expect(list.items[3] == 2);
try testing.expect(list.items[4] == 3);
try testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(a, 0, items[0..0]);
try testing.expect(list.items.len == 6);
try testing.expect(list.items[0] == 1);
}
}
test "std.ArrayList/ArrayListUnmanaged.replaceRange" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
const a = arena.allocator();
const init = [_]i32{ 1, 2, 3, 4, 5 };
const new = [_]i32{ 0, 0, 0 };
const result_zero = [_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 };
const result_eq = [_]i32{ 1, 0, 0, 0, 5 };
const result_le = [_]i32{ 1, 0, 0, 0, 4, 5 };
const result_gt = [_]i32{ 1, 0, 0, 0 };
{
var list_zero = ArrayList(i32).init(a);
var list_eq = ArrayList(i32).init(a);
var list_lt = ArrayList(i32).init(a);
var list_gt = ArrayList(i32).init(a);
try list_zero.appendSlice(&init);
try list_eq.appendSlice(&init);
try list_lt.appendSlice(&init);
try list_gt.appendSlice(&init);
try list_zero.replaceRange(1, 0, &new);
try list_eq.replaceRange(1, 3, &new);
try list_lt.replaceRange(1, 2, &new);
// after_range > new_items.len in function body
try testing.expect(1 + 4 > new.len);
try list_gt.replaceRange(1, 4, &new);
try testing.expectEqualSlices(i32, list_zero.items, &result_zero);
try testing.expectEqualSlices(i32, list_eq.items, &result_eq);
try testing.expectEqualSlices(i32, list_lt.items, &result_le);
try testing.expectEqualSlices(i32, list_gt.items, &result_gt);
}
{
var list_zero = ArrayListUnmanaged(i32){};
var list_eq = ArrayListUnmanaged(i32){};
var list_lt = ArrayListUnmanaged(i32){};
var list_gt = ArrayListUnmanaged(i32){};
try list_zero.appendSlice(a, &init);
try list_eq.appendSlice(a, &init);
try list_lt.appendSlice(a, &init);
try list_gt.appendSlice(a, &init);
try list_zero.replaceRange(a, 1, 0, &new);
try list_eq.replaceRange(a, 1, 3, &new);
try list_lt.replaceRange(a, 1, 2, &new);
// after_range > new_items.len in function body
try testing.expect(1 + 4 > new.len);
try list_gt.replaceRange(a, 1, 4, &new);
try testing.expectEqualSlices(i32, list_zero.items, &result_zero);
try testing.expectEqualSlices(i32, list_eq.items, &result_eq);
try testing.expectEqualSlices(i32, list_lt.items, &result_le);
try testing.expectEqualSlices(i32, list_gt.items, &result_gt);
}
}
const Item = struct {
integer: i32,
sub_items: ArrayList(Item),
};
const ItemUnmanaged = struct {
integer: i32,
sub_items: ArrayListUnmanaged(ItemUnmanaged),
};
test "std.ArrayList/ArrayListUnmanaged: ArrayList(T) of struct T" {
const a = std.testing.allocator;
{
var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(a) };
defer root.sub_items.deinit();
try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(a) });
try testing.expect(root.sub_items.items[0].integer == 42);
}
{
var root = ItemUnmanaged{ .integer = 1, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} };
defer root.sub_items.deinit(a);
try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} });
try testing.expect(root.sub_items.items[0].integer == 42);
}
}
test "std.ArrayList(u8)/ArrayListAligned implements writer" {
const a = testing.allocator;
{
var buffer = ArrayList(u8).init(a);
defer buffer.deinit();
const x: i32 = 42;
const y: i32 = 1234;
try buffer.writer().print("x: {}\ny: {}\n", .{ x, y });
try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
}
{
var list = ArrayListAligned(u8, 2).init(a);
defer list.deinit();
const writer = list.writer();
try writer.writeAll("a");
try writer.writeAll("bc");
try writer.writeAll("d");
try writer.writeAll("efg");
try testing.expectEqualSlices(u8, list.items, "abcdefg");
}
}
test "std.ArrayListUnmanaged(u8) implements writer" {
const a = testing.allocator;
{
var buffer: ArrayListUnmanaged(u8) = .{};
defer buffer.deinit(a);
const x: i32 = 42;
const y: i32 = 1234;
try buffer.writer(a).print("x: {}\ny: {}\n", .{ x, y });
try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
}
{
var list: ArrayListAlignedUnmanaged(u8, 2) = .{};
defer list.deinit(a);
const writer = list.writer(a);
try writer.writeAll("a");
try writer.writeAll("bc");
try writer.writeAll("d");
try writer.writeAll("efg");
try testing.expectEqualSlices(u8, list.items, "abcdefg");
}
}
test "std.ArrayList/ArrayListUnmanaged.shrink still sets length on error.OutOfMemory" {
// use an arena allocator to make sure realloc returns error.OutOfMemory
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
const a = arena.allocator();
{
var list = ArrayList(i32).init(a);
try list.append(1);
try list.append(2);
try list.append(3);
list.shrinkAndFree(1);
try testing.expect(list.items.len == 1);
}
{
var list = ArrayListUnmanaged(i32){};
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
list.shrinkAndFree(a, 1);
try testing.expect(list.items.len == 1);
}
}
test "std.ArrayList/ArrayListUnmanaged.addManyAsArray" {
const a = std.testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
(try list.addManyAsArray(4)).* = "aoeu".*;
try list.ensureTotalCapacity(8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
{
var list = ArrayListUnmanaged(u8){};
defer list.deinit(a);
(try list.addManyAsArray(a, 4)).* = "aoeu".*;
try list.ensureTotalCapacity(a, 8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
}
test "std.ArrayList/ArrayListUnmanaged.toOwnedSliceSentinel" {
const a = testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
try list.appendSlice("foobar");
const result = try list.toOwnedSliceSentinel(0);
defer a.free(result);
try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
}
{
var list = ArrayListUnmanaged(u8){};
defer list.deinit(a);
try list.appendSlice(a, "foobar");
const result = try list.toOwnedSliceSentinel(a, 0);
defer a.free(result);
try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
}
}
test "ArrayListAligned/ArrayListAlignedUnmanaged accepts unaligned slices" {
const a = testing.allocator;
{
var list = std.ArrayListAligned(u8, 8).init(a);
defer list.deinit();
try list.appendSlice(&.{ 0, 1, 2, 3 });
try list.insertSlice(2, &.{ 4, 5, 6, 7 });
try list.replaceRange(1, 3, &.{ 8, 9 });
try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
}
{
var list = std.ArrayListAlignedUnmanaged(u8, 8){};
defer list.deinit(a);
try list.appendSlice(a, &.{ 0, 1, 2, 3 });
try list.insertSlice(a, 2, &.{ 4, 5, 6, 7 });
try list.replaceRange(a, 1, 3, &.{ 8, 9 });
try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
}
}
test "std.ArrayList(u0)" {
// An ArrayList on zero-sized types should not need to allocate
var failing_allocator = testing.FailingAllocator.init(testing.allocator, 0);
const a = failing_allocator.allocator();
var list = ArrayList(u0).init(a);
defer list.deinit();
try list.append(0);
try list.append(0);
try list.append(0);
try testing.expectEqual(list.items.len, 3);
var count: usize = 0;
for (list.items) |x| {
try testing.expectEqual(x, 0);
count += 1;
}
try testing.expectEqual(count, 3);
}