zig/lib/std/meta.zig
Andrew Kelley b5dba702ff
fixes to std.meta
behavior tests are passing now
2020-03-19 09:53:55 -04:00

653 lines
18 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const debug = std.debug;
const mem = std.mem;
const math = std.math;
const testing = std.testing;
pub const trait = @import("meta/trait.zig");
const TypeInfo = builtin.TypeInfo;
pub fn tagName(v: var) []const u8 {
const T = @TypeOf(v);
switch (@typeInfo(T)) {
.ErrorSet => return @errorName(v),
else => return @tagName(v),
}
}
test "std.meta.tagName" {
const E1 = enum {
A,
B,
};
const E2 = enum(u8) {
C = 33,
D,
};
const U1 = union(enum) {
G: u8,
H: u16,
};
const U2 = union(E2) {
C: u8,
D: u16,
};
var u1g = U1{ .G = 0 };
var u1h = U1{ .H = 0 };
var u2a = U2{ .C = 0 };
var u2b = U2{ .D = 0 };
testing.expect(mem.eql(u8, tagName(E1.A), "A"));
testing.expect(mem.eql(u8, tagName(E1.B), "B"));
testing.expect(mem.eql(u8, tagName(E2.C), "C"));
testing.expect(mem.eql(u8, tagName(E2.D), "D"));
testing.expect(mem.eql(u8, tagName(error.E), "E"));
testing.expect(mem.eql(u8, tagName(error.F), "F"));
testing.expect(mem.eql(u8, tagName(u1g), "G"));
testing.expect(mem.eql(u8, tagName(u1h), "H"));
testing.expect(mem.eql(u8, tagName(u2a), "C"));
testing.expect(mem.eql(u8, tagName(u2b), "D"));
}
pub fn stringToEnum(comptime T: type, str: []const u8) ?T {
inline for (@typeInfo(T).Enum.fields) |enumField| {
if (mem.eql(u8, str, enumField.name)) {
return @field(T, enumField.name);
}
}
return null;
}
test "std.meta.stringToEnum" {
const E1 = enum {
A,
B,
};
testing.expect(E1.A == stringToEnum(E1, "A").?);
testing.expect(E1.B == stringToEnum(E1, "B").?);
testing.expect(null == stringToEnum(E1, "C"));
}
pub fn bitCount(comptime T: type) comptime_int {
return switch (@typeInfo(T)) {
.Bool => 1,
.Int => |info| info.bits,
.Float => |info| info.bits,
else => @compileError("Expected bool, int or float type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.bitCount" {
testing.expect(bitCount(u8) == 8);
testing.expect(bitCount(f32) == 32);
}
pub fn alignment(comptime T: type) comptime_int {
//@alignOf works on non-pointer types
const P = if (comptime trait.is(.Pointer)(T)) T else *T;
return @typeInfo(P).Pointer.alignment;
}
test "std.meta.alignment" {
testing.expect(alignment(u8) == 1);
testing.expect(alignment(*align(1) u8) == 1);
testing.expect(alignment(*align(2) u8) == 2);
testing.expect(alignment([]align(1) u8) == 1);
testing.expect(alignment([]align(2) u8) == 2);
}
pub fn Child(comptime T: type) type {
return switch (@typeInfo(T)) {
.Array => |info| info.child,
.Pointer => |info| info.child,
.Optional => |info| info.child,
else => @compileError("Expected pointer, optional, or array type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.Child" {
testing.expect(Child([1]u8) == u8);
testing.expect(Child(*u8) == u8);
testing.expect(Child([]u8) == u8);
testing.expect(Child(?u8) == u8);
}
/// Given a "memory span" type, returns the "element type".
pub fn Elem(comptime T: type) type {
switch (@typeInfo(T)) {
.Array => |info| return info.child,
.Pointer => |info| switch (info.size) {
.One => switch (@typeInfo(info.child)) {
.Array => |array_info| return array_info.child,
else => {},
},
.Many, .C, .Slice => return info.child,
},
else => {},
}
@compileError("Expected pointer, slice, or array, found '" ++ @typeName(T) ++ "'");
}
test "std.meta.Elem" {
testing.expect(Elem([1]u8) == u8);
testing.expect(Elem([*]u8) == u8);
testing.expect(Elem([]u8) == u8);
testing.expect(Elem(*[10]u8) == u8);
}
/// Given a type which can have a sentinel e.g. `[:0]u8`, returns the sentinel value,
/// or `null` if there is not one.
/// Types which cannot possibly have a sentinel will be a compile error.
pub fn sentinel(comptime T: type) ?Elem(T) {
switch (@typeInfo(T)) {
.Array => |info| return info.sentinel,
.Pointer => |info| {
switch (info.size) {
.Many, .Slice => return info.sentinel,
.One => switch (@typeInfo(info.child)) {
.Array => |array_info| return array_info.sentinel,
else => {},
},
else => {},
}
},
else => {},
}
@compileError("type '" ++ @typeName(T) ++ "' cannot possibly have a sentinel");
}
test "std.meta.sentinel" {
testSentinel();
comptime testSentinel();
}
fn testSentinel() void {
testing.expectEqual(@as(u8, 0), sentinel([:0]u8).?);
testing.expectEqual(@as(u8, 0), sentinel([*:0]u8).?);
testing.expectEqual(@as(u8, 0), sentinel([5:0]u8).?);
testing.expectEqual(@as(u8, 0), sentinel(*const [5:0]u8).?);
testing.expect(sentinel([]u8) == null);
testing.expect(sentinel([*]u8) == null);
testing.expect(sentinel([5]u8) == null);
testing.expect(sentinel(*const [5]u8) == null);
}
pub fn containerLayout(comptime T: type) TypeInfo.ContainerLayout {
return switch (@typeInfo(T)) {
.Struct => |info| info.layout,
.Enum => |info| info.layout,
.Union => |info| info.layout,
else => @compileError("Expected struct, enum or union type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.containerLayout" {
const E1 = enum {
A,
};
const E2 = packed enum {
A,
};
const E3 = extern enum {
A,
};
const S1 = struct {};
const S2 = packed struct {};
const S3 = extern struct {};
const U1 = union {
a: u8,
};
const U2 = packed union {
a: u8,
};
const U3 = extern union {
a: u8,
};
testing.expect(containerLayout(E1) == .Auto);
testing.expect(containerLayout(E2) == .Packed);
testing.expect(containerLayout(E3) == .Extern);
testing.expect(containerLayout(S1) == .Auto);
testing.expect(containerLayout(S2) == .Packed);
testing.expect(containerLayout(S3) == .Extern);
testing.expect(containerLayout(U1) == .Auto);
testing.expect(containerLayout(U2) == .Packed);
testing.expect(containerLayout(U3) == .Extern);
}
pub fn declarations(comptime T: type) []TypeInfo.Declaration {
return switch (@typeInfo(T)) {
.Struct => |info| info.decls,
.Enum => |info| info.decls,
.Union => |info| info.decls,
else => @compileError("Expected struct, enum or union type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.declarations" {
const E1 = enum {
A,
fn a() void {}
};
const S1 = struct {
fn a() void {}
};
const U1 = union {
a: u8,
fn a() void {}
};
const decls = comptime [_][]TypeInfo.Declaration{
declarations(E1),
declarations(S1),
declarations(U1),
};
inline for (decls) |decl| {
testing.expect(decl.len == 1);
testing.expect(comptime mem.eql(u8, decl[0].name, "a"));
}
}
pub fn declarationInfo(comptime T: type, comptime decl_name: []const u8) TypeInfo.Declaration {
inline for (comptime declarations(T)) |decl| {
if (comptime mem.eql(u8, decl.name, decl_name))
return decl;
}
@compileError("'" ++ @typeName(T) ++ "' has no declaration '" ++ decl_name ++ "'");
}
test "std.meta.declarationInfo" {
const E1 = enum {
A,
fn a() void {}
};
const S1 = struct {
fn a() void {}
};
const U1 = union {
a: u8,
fn a() void {}
};
const infos = comptime [_]TypeInfo.Declaration{
declarationInfo(E1, "a"),
declarationInfo(S1, "a"),
declarationInfo(U1, "a"),
};
inline for (infos) |info| {
testing.expect(comptime mem.eql(u8, info.name, "a"));
testing.expect(!info.is_pub);
}
}
pub fn fields(comptime T: type) switch (@typeInfo(T)) {
.Struct => []TypeInfo.StructField,
.Union => []TypeInfo.UnionField,
.ErrorSet => []TypeInfo.Error,
.Enum => []TypeInfo.EnumField,
else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"),
} {
return switch (@typeInfo(T)) {
.Struct => |info| info.fields,
.Union => |info| info.fields,
.Enum => |info| info.fields,
.ErrorSet => |errors| errors.?, // must be non global error set
else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.fields" {
const E1 = enum {
A,
};
const E2 = error{A};
const S1 = struct {
a: u8,
};
const U1 = union {
a: u8,
};
const e1f = comptime fields(E1);
const e2f = comptime fields(E2);
const sf = comptime fields(S1);
const uf = comptime fields(U1);
testing.expect(e1f.len == 1);
testing.expect(e2f.len == 1);
testing.expect(sf.len == 1);
testing.expect(uf.len == 1);
testing.expect(mem.eql(u8, e1f[0].name, "A"));
testing.expect(mem.eql(u8, e2f[0].name, "A"));
testing.expect(mem.eql(u8, sf[0].name, "a"));
testing.expect(mem.eql(u8, uf[0].name, "a"));
testing.expect(comptime sf[0].field_type == u8);
testing.expect(comptime uf[0].field_type == u8);
}
pub fn fieldInfo(comptime T: type, comptime field_name: []const u8) switch (@typeInfo(T)) {
.Struct => TypeInfo.StructField,
.Union => TypeInfo.UnionField,
.ErrorSet => TypeInfo.Error,
.Enum => TypeInfo.EnumField,
else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"),
} {
inline for (comptime fields(T)) |field| {
if (comptime mem.eql(u8, field.name, field_name))
return field;
}
@compileError("'" ++ @typeName(T) ++ "' has no field '" ++ field_name ++ "'");
}
test "std.meta.fieldInfo" {
const E1 = enum {
A,
};
const E2 = error{A};
const S1 = struct {
a: u8,
};
const U1 = union {
a: u8,
};
const e1f = comptime fieldInfo(E1, "A");
const e2f = comptime fieldInfo(E2, "A");
const sf = comptime fieldInfo(S1, "a");
const uf = comptime fieldInfo(U1, "a");
testing.expect(mem.eql(u8, e1f.name, "A"));
testing.expect(mem.eql(u8, e2f.name, "A"));
testing.expect(mem.eql(u8, sf.name, "a"));
testing.expect(mem.eql(u8, uf.name, "a"));
testing.expect(comptime sf.field_type == u8);
testing.expect(comptime uf.field_type == u8);
}
pub fn TagType(comptime T: type) type {
return switch (@typeInfo(T)) {
.Enum => |info| info.tag_type,
.Union => |info| if (info.tag_type) |Tag| Tag else null,
else => @compileError("expected enum or union type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.TagType" {
const E = enum(u8) {
C = 33,
D,
};
const U = union(E) {
C: u8,
D: u16,
};
testing.expect(TagType(E) == u8);
testing.expect(TagType(U) == E);
}
///Returns the active tag of a tagged union
pub fn activeTag(u: var) @TagType(@TypeOf(u)) {
const T = @TypeOf(u);
return @as(@TagType(T), u);
}
test "std.meta.activeTag" {
const UE = enum {
Int,
Float,
};
const U = union(UE) {
Int: u32,
Float: f32,
};
var u = U{ .Int = 32 };
testing.expect(activeTag(u) == UE.Int);
u = U{ .Float = 112.9876 };
testing.expect(activeTag(u) == UE.Float);
}
///Given a tagged union type, and an enum, return the type of the union
/// field corresponding to the enum tag.
pub fn TagPayloadType(comptime U: type, tag: @TagType(U)) type {
testing.expect(trait.is(.Union)(U));
const info = @typeInfo(U).Union;
inline for (info.fields) |field_info| {
if (field_info.enum_field.?.value == @enumToInt(tag)) return field_info.field_type;
}
unreachable;
}
test "std.meta.TagPayloadType" {
const Event = union(enum) {
Moved: struct {
from: i32,
to: i32,
},
};
const MovedEvent = TagPayloadType(Event, Event.Moved);
var e: Event = undefined;
testing.expect(MovedEvent == @TypeOf(e.Moved));
}
/// Compares two of any type for equality. Containers are compared on a field-by-field basis,
/// where possible. Pointers are not followed.
pub fn eql(a: var, b: @TypeOf(a)) bool {
const T = @TypeOf(a);
switch (@typeInfo(T)) {
.Struct => |info| {
inline for (info.fields) |field_info| {
if (!eql(@field(a, field_info.name), @field(b, field_info.name))) return false;
}
return true;
},
.ErrorUnion => {
if (a) |a_p| {
if (b) |b_p| return eql(a_p, b_p) else |_| return false;
} else |a_e| {
if (b) |_| return false else |b_e| return a_e == b_e;
}
},
.Union => |info| {
if (info.tag_type) |_| {
const tag_a = activeTag(a);
const tag_b = activeTag(b);
if (tag_a != tag_b) return false;
inline for (info.fields) |field_info| {
const enum_field = field_info.enum_field.?;
if (enum_field.value == @enumToInt(tag_a)) {
return eql(@field(a, enum_field.name), @field(b, enum_field.name));
}
}
return false;
}
@compileError("cannot compare untagged union type " ++ @typeName(T));
},
.Array => {
if (a.len != b.len) return false;
for (a) |e, i|
if (!eql(e, b[i])) return false;
return true;
},
.Vector => |info| {
var i: usize = 0;
while (i < info.len) : (i += 1) {
if (!eql(a[i], b[i])) return false;
}
return true;
},
.Pointer => |info| {
return switch (info.size) {
.One, .Many, .C => a == b,
.Slice => a.ptr == b.ptr and a.len == b.len,
};
},
.Optional => {
if (a == null and b == null) return true;
if (a == null or b == null) return false;
return eql(a.?, b.?);
},
else => return a == b,
}
}
test "std.meta.eql" {
const S = struct {
a: u32,
b: f64,
c: [5]u8,
};
const U = union(enum) {
s: S,
f: ?f32,
};
const s_1 = S{
.a = 134,
.b = 123.3,
.c = "12345".*,
};
const s_2 = S{
.a = 1,
.b = 123.3,
.c = "54321".*,
};
const s_3 = S{
.a = 134,
.b = 123.3,
.c = "12345".*,
};
const u_1 = U{ .f = 24 };
const u_2 = U{ .s = s_1 };
const u_3 = U{ .f = 24 };
testing.expect(eql(s_1, s_3));
testing.expect(eql(&s_1, &s_1));
testing.expect(!eql(&s_1, &s_3));
testing.expect(eql(u_1, u_3));
testing.expect(!eql(u_1, u_2));
var a1 = "abcdef".*;
var a2 = "abcdef".*;
var a3 = "ghijkl".*;
testing.expect(eql(a1, a2));
testing.expect(!eql(a1, a3));
testing.expect(!eql(a1[0..], a2[0..]));
const EU = struct {
fn tst(err: bool) !u8 {
if (err) return error.Error;
return @as(u8, 5);
}
};
testing.expect(eql(EU.tst(true), EU.tst(true)));
testing.expect(eql(EU.tst(false), EU.tst(false)));
testing.expect(!eql(EU.tst(false), EU.tst(true)));
var v1 = @splat(4, @as(u32, 1));
var v2 = @splat(4, @as(u32, 1));
var v3 = @splat(4, @as(u32, 2));
testing.expect(eql(v1, v2));
testing.expect(!eql(v1, v3));
}
test "intToEnum with error return" {
const E1 = enum {
A,
};
const E2 = enum {
A,
B,
};
var zero: u8 = 0;
var one: u16 = 1;
testing.expect(intToEnum(E1, zero) catch unreachable == E1.A);
testing.expect(intToEnum(E2, one) catch unreachable == E2.B);
testing.expectError(error.InvalidEnumTag, intToEnum(E1, one));
}
pub const IntToEnumError = error{InvalidEnumTag};
pub fn intToEnum(comptime Tag: type, tag_int: var) IntToEnumError!Tag {
inline for (@typeInfo(Tag).Enum.fields) |f| {
const this_tag_value = @field(Tag, f.name);
if (tag_int == @enumToInt(this_tag_value)) {
return this_tag_value;
}
}
return error.InvalidEnumTag;
}
/// Given a type and a name, return the field index according to source order.
/// Returns `null` if the field is not found.
pub fn fieldIndex(comptime T: type, comptime name: []const u8) ?comptime_int {
inline for (fields(T)) |field, i| {
if (mem.eql(u8, field.name, name))
return i;
}
return null;
}
/// Given a type, reference all the declarations inside, so that the semantic analyzer sees them.
pub fn refAllDecls(comptime T: type) void {
if (!builtin.is_test) return;
inline for (declarations(T)) |decl| {
_ = decl;
}
}
/// Returns a slice of pointers to public declarations of a namespace.
pub fn declList(comptime Namespace: type, comptime Decl: type) []const *const Decl {
const S = struct {
fn declNameLessThan(lhs: *const Decl, rhs: *const Decl) bool {
return mem.lessThan(u8, lhs.name, rhs.name);
}
};
comptime {
const decls = declarations(Namespace);
var array: [decls.len]*const Decl = undefined;
for (decls) |decl, i| {
array[i] = &@field(Namespace, decl.name);
}
std.sort.sort(*const Decl, &array, S.declNameLessThan);
return &array;
}
}
pub fn IntType(comptime is_signed: bool, comptime bit_count: u16) type {
return @Type(TypeInfo{
.Int = .{
.is_signed = is_signed,
.bits = bit_count,
},
});
}