mirror of
https://github.com/ziglang/zig.git
synced 2024-12-01 17:42:31 +00:00
3671582c15
The purpose of this is: * Only one way to do things * Changing a function with void return type to return a possible error becomes a 1 character change, subtly encouraging people to use errors. See #632 Here are some imperfect sed commands for performing this update: remove arrow: ``` sed -i 's/\(\bfn\b.*\)-> /\1/g' $(find . -name "*.zig") ``` add void: ``` sed -i 's/\(\bfn\b.*\))\s*{/\1) void {/g' $(find ../ -name "*.zig") ``` Some cleanup may be necessary, but this should do the bulk of the work.
234 lines
6.8 KiB
Zig
234 lines
6.8 KiB
Zig
// Special Cases:
|
|
//
|
|
// pow(x, +-0) = 1 for any x
|
|
// pow(1, y) = 1 for any y
|
|
// pow(x, 1) = x for any x
|
|
// pow(nan, y) = nan
|
|
// pow(x, nan) = nan
|
|
// pow(+-0, y) = +-inf for y an odd integer < 0
|
|
// pow(+-0, -inf) = +inf
|
|
// pow(+-0, +inf) = +0
|
|
// pow(+-0, y) = +inf for finite y < 0 and not an odd integer
|
|
// pow(+-0, y) = +-0 for y an odd integer > 0
|
|
// pow(+-0, y) = +0 for finite y > 0 and not an odd integer
|
|
// pow(-1, +-inf) = 1
|
|
// pow(x, +inf) = +inf for |x| > 1
|
|
// pow(x, -inf) = +0 for |x| > 1
|
|
// pow(x, +inf) = +0 for |x| < 1
|
|
// pow(x, -inf) = +inf for |x| < 1
|
|
// pow(+inf, y) = +inf for y > 0
|
|
// pow(+inf, y) = +0 for y < 0
|
|
// pow(-inf, y) = pow(-0, -y)
|
|
// pow(x, y) = nan for finite x < 0 and finite non-integer y
|
|
|
|
const builtin = @import("builtin");
|
|
const std = @import("../index.zig");
|
|
const math = std.math;
|
|
const assert = std.debug.assert;
|
|
|
|
// This implementation is taken from the go stlib, musl is a bit more complex.
|
|
pub fn pow(comptime T: type, x: T, y: T) T {
|
|
|
|
@setFloatMode(this, @import("builtin").FloatMode.Strict);
|
|
|
|
if (T != f32 and T != f64) {
|
|
@compileError("pow not implemented for " ++ @typeName(T));
|
|
}
|
|
|
|
// pow(x, +-0) = 1 for all x
|
|
// pow(1, y) = 1 for all y
|
|
if (y == 0 or x == 1) {
|
|
return 1;
|
|
}
|
|
|
|
// pow(nan, y) = nan for all y
|
|
// pow(x, nan) = nan for all x
|
|
if (math.isNan(x) or math.isNan(y)) {
|
|
return math.nan(T);
|
|
}
|
|
|
|
// pow(x, 1) = x for all x
|
|
if (y == 1) {
|
|
return x;
|
|
}
|
|
|
|
// special case sqrt
|
|
if (y == 0.5) {
|
|
return math.sqrt(x);
|
|
}
|
|
|
|
if (y == -0.5) {
|
|
return 1 / math.sqrt(x);
|
|
}
|
|
|
|
if (x == 0) {
|
|
if (y < 0) {
|
|
// pow(+-0, y) = +- 0 for y an odd integer
|
|
if (isOddInteger(y)) {
|
|
return math.copysign(T, math.inf(T), x);
|
|
}
|
|
// pow(+-0, y) = +inf for y an even integer
|
|
else {
|
|
return math.inf(T);
|
|
}
|
|
} else {
|
|
if (isOddInteger(y)) {
|
|
return x;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (math.isInf(y)) {
|
|
// pow(-1, inf) = 1 for all x
|
|
if (x == -1) {
|
|
return 1.0;
|
|
}
|
|
// pow(x, +inf) = +0 for |x| < 1
|
|
// pow(x, -inf) = +0 for |x| > 1
|
|
else if ((math.fabs(x) < 1) == math.isPositiveInf(y)) {
|
|
return 0;
|
|
}
|
|
// pow(x, -inf) = +inf for |x| < 1
|
|
// pow(x, +inf) = +inf for |x| > 1
|
|
else {
|
|
return math.inf(T);
|
|
}
|
|
}
|
|
|
|
if (math.isInf(x)) {
|
|
if (math.isNegativeInf(x)) {
|
|
return pow(T, 1 / x, -y);
|
|
}
|
|
// pow(+inf, y) = +0 for y < 0
|
|
else if (y < 0) {
|
|
return 0;
|
|
}
|
|
// pow(+inf, y) = +0 for y > 0
|
|
else if (y > 0) {
|
|
return math.inf(T);
|
|
}
|
|
}
|
|
|
|
var ay = y;
|
|
var flip = false;
|
|
if (ay < 0) {
|
|
ay = -ay;
|
|
flip = true;
|
|
}
|
|
|
|
const r1 = math.modf(ay);
|
|
var yi = r1.ipart;
|
|
var yf = r1.fpart;
|
|
|
|
if (yf != 0 and x < 0) {
|
|
return math.nan(T);
|
|
}
|
|
if (yi >= 1 << (T.bit_count - 1)) {
|
|
return math.exp(y * math.ln(x));
|
|
}
|
|
|
|
// a = a1 * 2^ae
|
|
var a1: T = 1.0;
|
|
var ae: i32 = 0;
|
|
|
|
// a *= x^yf
|
|
if (yf != 0) {
|
|
if (yf > 0.5) {
|
|
yf -= 1;
|
|
yi += 1;
|
|
}
|
|
a1 = math.exp(yf * math.ln(x));
|
|
}
|
|
|
|
// a *= x^yi
|
|
const r2 = math.frexp(x);
|
|
var xe = r2.exponent;
|
|
var x1 = r2.significand;
|
|
|
|
var i = i32(yi);
|
|
while (i != 0) : (i >>= 1) {
|
|
if (i & 1 == 1) {
|
|
a1 *= x1;
|
|
ae += xe;
|
|
}
|
|
x1 *= x1;
|
|
xe <<= 1;
|
|
if (x1 < 0.5) {
|
|
x1 += x1;
|
|
xe -= 1;
|
|
}
|
|
}
|
|
|
|
// a *= a1 * 2^ae
|
|
if (flip) {
|
|
a1 = 1 / a1;
|
|
ae = -ae;
|
|
}
|
|
|
|
return math.scalbn(a1, ae);
|
|
}
|
|
|
|
fn isOddInteger(x: f64) bool {
|
|
const r = math.modf(x);
|
|
return r.fpart == 0.0 and i64(r.ipart) & 1 == 1;
|
|
}
|
|
|
|
test "math.pow" {
|
|
const epsilon = 0.000001;
|
|
|
|
assert(math.approxEq(f32, pow(f32, 0.0, 3.3), 0.0, epsilon));
|
|
assert(math.approxEq(f32, pow(f32, 0.8923, 3.3), 0.686572, epsilon));
|
|
assert(math.approxEq(f32, pow(f32, 0.2, 3.3), 0.004936, epsilon));
|
|
assert(math.approxEq(f32, pow(f32, 1.5, 3.3), 3.811546, epsilon));
|
|
assert(math.approxEq(f32, pow(f32, 37.45, 3.3), 155736.703125, epsilon));
|
|
assert(math.approxEq(f32, pow(f32, 89.123, 3.3), 2722489.5, epsilon));
|
|
|
|
assert(math.approxEq(f64, pow(f64, 0.0, 3.3), 0.0, epsilon));
|
|
assert(math.approxEq(f64, pow(f64, 0.8923, 3.3), 0.686572, epsilon));
|
|
assert(math.approxEq(f64, pow(f64, 0.2, 3.3), 0.004936, epsilon));
|
|
assert(math.approxEq(f64, pow(f64, 1.5, 3.3), 3.811546, epsilon));
|
|
assert(math.approxEq(f64, pow(f64, 37.45, 3.3), 155736.7160616, epsilon));
|
|
assert(math.approxEq(f64, pow(f64, 89.123, 3.3), 2722490.231436, epsilon));
|
|
}
|
|
|
|
test "math.pow.special" {
|
|
const epsilon = 0.000001;
|
|
|
|
assert(pow(f32, 4, 0.0) == 1.0);
|
|
assert(pow(f32, 7, -0.0) == 1.0);
|
|
assert(pow(f32, 45, 1.0) == 45);
|
|
assert(pow(f32, -45, 1.0) == -45);
|
|
assert(math.isNan(pow(f32, math.nan(f32), 5.0)));
|
|
assert(math.isNan(pow(f32, 5.0, math.nan(f32))));
|
|
assert(math.isPositiveInf(pow(f32, 0.0, -1.0)));
|
|
//assert(math.isNegativeInf(pow(f32, -0.0, -3.0))); TODO is this required?
|
|
assert(math.isPositiveInf(pow(f32, 0.0, -math.inf(f32))));
|
|
assert(math.isPositiveInf(pow(f32, -0.0, -math.inf(f32))));
|
|
assert(pow(f32, 0.0, math.inf(f32)) == 0.0);
|
|
assert(pow(f32, -0.0, math.inf(f32)) == 0.0);
|
|
assert(math.isPositiveInf(pow(f32, 0.0, -2.0)));
|
|
assert(math.isPositiveInf(pow(f32, -0.0, -2.0)));
|
|
assert(pow(f32, 0.0, 1.0) == 0.0);
|
|
assert(pow(f32, -0.0, 1.0) == -0.0);
|
|
assert(pow(f32, 0.0, 2.0) == 0.0);
|
|
assert(pow(f32, -0.0, 2.0) == 0.0);
|
|
assert(math.approxEq(f32, pow(f32, -1.0, math.inf(f32)), 1.0, epsilon));
|
|
assert(math.approxEq(f32, pow(f32, -1.0, -math.inf(f32)), 1.0, epsilon));
|
|
assert(math.isPositiveInf(pow(f32, 1.2, math.inf(f32))));
|
|
assert(math.isPositiveInf(pow(f32, -1.2, math.inf(f32))));
|
|
assert(pow(f32, 1.2, -math.inf(f32)) == 0.0);
|
|
assert(pow(f32, -1.2, -math.inf(f32)) == 0.0);
|
|
assert(pow(f32, 0.2, math.inf(f32)) == 0.0);
|
|
assert(pow(f32, -0.2, math.inf(f32)) == 0.0);
|
|
assert(math.isPositiveInf(pow(f32, 0.2, -math.inf(f32))));
|
|
assert(math.isPositiveInf(pow(f32, -0.2, -math.inf(f32))));
|
|
assert(math.isPositiveInf(pow(f32, math.inf(f32), 1.0)));
|
|
assert(pow(f32, math.inf(f32), -1.0) == 0.0);
|
|
//assert(pow(f32, -math.inf(f32), 5.0) == pow(f32, -0.0, -5.0)); TODO support negative 0?
|
|
assert(pow(f32, -math.inf(f32), -5.2) == pow(f32, -0.0, 5.2));
|
|
assert(math.isNan(pow(f32, -1.0, 1.2)));
|
|
assert(math.isNan(pow(f32, -12.4, 78.5)));
|
|
}
|