zig/lib/std/event/rwlock.zig
Andrew Kelley 4a69b11e74 add license header to all std lib files
add SPDX license identifier
copyright ownership is zig contributors
2020-08-20 16:07:04 -04:00

297 lines
11 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Loop = std.event.Loop;
/// Thread-safe async/await lock.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
/// Many readers can hold the lock at the same time; however locking for writing is exclusive.
/// When a read lock is held, it will not be released until the reader queue is empty.
/// When a write lock is held, it will not be released until the writer queue is empty.
/// TODO: make this API also work in blocking I/O mode
pub const RwLock = struct {
shared_state: State,
writer_queue: Queue,
reader_queue: Queue,
writer_queue_empty: bool,
reader_queue_empty: bool,
reader_lock_count: usize,
const State = enum(u8) {
Unlocked,
WriteLock,
ReadLock,
};
const Queue = std.atomic.Queue(anyframe);
const global_event_loop = Loop.instance orelse
@compileError("std.event.RwLock currently only works with event-based I/O");
pub const HeldRead = struct {
lock: *RwLock,
pub fn release(self: HeldRead) void {
// If other readers still hold the lock, we're done.
if (@atomicRmw(usize, &self.lock.reader_lock_count, .Sub, 1, .SeqCst) != 1) {
return;
}
@atomicStore(bool, &self.lock.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.lock.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
self.lock.commonPostUnlock();
}
};
pub const HeldWrite = struct {
lock: *RwLock,
pub fn release(self: HeldWrite) void {
// See if we can leave it locked for writing, and pass the lock to the next writer
// in the queue to grab the lock.
if (self.lock.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
// We need to release the write lock. Check if any readers are waiting to grab the lock.
if (!@atomicLoad(bool, &self.lock.reader_queue_empty, .SeqCst)) {
// Switch to a read lock.
@atomicStore(State, &self.lock.shared_state, .ReadLock, .SeqCst);
while (self.lock.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
@atomicStore(bool, &self.lock.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.lock.shared_state, .Unlocked, .SeqCst);
self.lock.commonPostUnlock();
}
};
pub fn init() RwLock {
return .{
.shared_state = .Unlocked,
.writer_queue = Queue.init(),
.writer_queue_empty = true,
.reader_queue = Queue.init(),
.reader_queue_empty = true,
.reader_lock_count = 0,
};
}
/// Must be called when not locked. Not thread safe.
/// All calls to acquire() and release() must complete before calling deinit().
pub fn deinit(self: *RwLock) void {
assert(self.shared_state == .Unlocked);
while (self.writer_queue.get()) |node| resume node.data;
while (self.reader_queue.get()) |node| resume node.data;
}
pub fn acquireRead(self: *RwLock) callconv(.Async) HeldRead {
_ = @atomicRmw(usize, &self.reader_lock_count, .Add, 1, .SeqCst);
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
self.reader_queue.put(&my_tick_node);
// At this point, we are in the reader_queue, so we might have already been resumed.
// We set this bit so that later we can rely on the fact, that if reader_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.reader_queue_empty, false, .SeqCst);
// Here we don't care if we are the one to do the locking or if it was already locked for reading.
const have_read_lock = if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst)) |old_state| old_state == .ReadLock else true;
if (have_read_lock) {
// Give out all the read locks.
if (self.reader_queue.get()) |first_node| {
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
resume first_node.data;
}
}
}
return HeldRead{ .lock = self };
}
pub fn acquireWrite(self: *RwLock) callconv(.Async) HeldWrite {
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
self.writer_queue.put(&my_tick_node);
// At this point, we are in the writer_queue, so we might have already been resumed.
// We set this bit so that later we can rely on the fact, that if writer_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.writer_queue_empty, false, .SeqCst);
// Here we must be the one to acquire the write lock. It cannot already be locked.
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) == null) {
// We now have a write lock.
if (self.writer_queue.get()) |node| {
// Whether this node is us or someone else, we tail resume it.
resume node.data;
}
}
}
return HeldWrite{ .lock = self };
}
fn commonPostUnlock(self: *RwLock) void {
while (true) {
// There might be a writer_queue item or a reader_queue item
// If we check and both are empty, we can be done, because the other actors will try to
// obtain the lock.
// But if there's a writer_queue item or a reader_queue item,
// we are the actor which must loop and attempt to grab the lock again.
if (!@atomicLoad(bool, &self.writer_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there's an item in the writer queue, give them the lock, and we're done.
if (self.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
// Release the lock again.
@atomicStore(bool, &self.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.shared_state, .Unlocked, .SeqCst);
continue;
}
if (!@atomicLoad(bool, &self.reader_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there are any items in the reader queue, give out all the reader locks, and we're done.
if (self.reader_queue.get()) |first_node| {
global_event_loop.onNextTick(first_node);
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
// Release the lock again.
@atomicStore(bool, &self.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
continue;
}
return;
}
}
};
test "std.event.RwLock" {
// https://github.com/ziglang/zig/issues/2377
if (true) return error.SkipZigTest;
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
var lock = RwLock.init();
defer lock.deinit();
const handle = testLock(std.heap.page_allocator, &lock);
const expected_result = [1]i32{shared_it_count * @intCast(i32, shared_test_data.len)} ** shared_test_data.len;
testing.expectEqualSlices(i32, expected_result, shared_test_data);
}
fn testLock(allocator: *Allocator, lock: *RwLock) callconv(.Async) void {
var read_nodes: [100]Loop.NextTickNode = undefined;
for (read_nodes) |*read_node| {
const frame = allocator.create(@Frame(readRunner)) catch @panic("memory");
read_node.data = frame;
frame.* = async readRunner(lock);
Loop.instance.?.onNextTick(read_node);
}
var write_nodes: [shared_it_count]Loop.NextTickNode = undefined;
for (write_nodes) |*write_node| {
const frame = allocator.create(@Frame(writeRunner)) catch @panic("memory");
write_node.data = frame;
frame.* = async writeRunner(lock);
Loop.instance.?.onNextTick(write_node);
}
for (write_nodes) |*write_node| {
const casted = @ptrCast(*const @Frame(writeRunner), write_node.data);
await casted;
allocator.destroy(casted);
}
for (read_nodes) |*read_node| {
const casted = @ptrCast(*const @Frame(readRunner), read_node.data);
await casted;
allocator.destroy(casted);
}
}
const shared_it_count = 10;
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
var shared_count: usize = 0;
fn writeRunner(lock: *RwLock) callconv(.Async) void {
suspend; // resumed by onNextTick
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
std.time.sleep(100 * std.time.microsecond);
const lock_promise = async lock.acquireWrite();
const handle = await lock_promise;
defer handle.release();
shared_count += 1;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
shared_test_index = 0;
}
}
fn readRunner(lock: *RwLock) callconv(.Async) void {
suspend; // resumed by onNextTick
std.time.sleep(1);
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const lock_promise = async lock.acquireRead();
const handle = await lock_promise;
defer handle.release();
testing.expect(shared_test_index == 0);
testing.expect(shared_test_data[i] == @intCast(i32, shared_count));
}
}