zig/lib/std/atomic/queue.zig
2020-04-04 13:47:07 -04:00

397 lines
12 KiB
Zig

const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const expect = std.testing.expect;
/// Many producer, many consumer, non-allocating, thread-safe.
/// Uses a mutex to protect access.
/// The queue does not manage ownership and the user is responsible to
/// manage the storage of the nodes.
pub fn Queue(comptime T: type) type {
return struct {
head: ?*Node,
tail: ?*Node,
mutex: std.Mutex,
pub const Self = @This();
pub const Node = std.TailQueue(T).Node;
/// Initializes a new queue. The queue does not provide a `deinit()`
/// function, so the user must take care of cleaning up the queue elements.
pub fn init() Self {
return Self{
.head = null,
.tail = null,
.mutex = std.Mutex.init(),
};
}
/// Appends `node` to the queue.
/// The lifetime of `node` must be longer than lifetime of queue.
pub fn put(self: *Self, node: *Node) void {
node.next = null;
const held = self.mutex.acquire();
defer held.release();
node.prev = self.tail;
self.tail = node;
if (node.prev) |prev_tail| {
prev_tail.next = node;
} else {
assert(self.head == null);
self.head = node;
}
}
/// Gets a previously inserted node or returns `null` if there is none.
/// It is safe to `get()` a node from the queue while another thread tries
/// to `remove()` the same node at the same time.
pub fn get(self: *Self) ?*Node {
const held = self.mutex.acquire();
defer held.release();
const head = self.head orelse return null;
self.head = head.next;
if (head.next) |new_head| {
new_head.prev = null;
} else {
self.tail = null;
}
// This way, a get() and a remove() are thread-safe with each other.
head.prev = null;
head.next = null;
return head;
}
pub fn unget(self: *Self, node: *Node) void {
node.prev = null;
const held = self.mutex.acquire();
defer held.release();
const opt_head = self.head;
self.head = node;
if (opt_head) |head| {
head.next = node;
} else {
assert(self.tail == null);
self.tail = node;
}
}
/// Removes a node from the queue, returns whether node was actually removed.
/// It is safe to `remove()` a node from the queue while another thread tries
/// to `get()` the same node at the same time.
pub fn remove(self: *Self, node: *Node) bool {
const held = self.mutex.acquire();
defer held.release();
if (node.prev == null and node.next == null and self.head != node) {
return false;
}
if (node.prev) |prev| {
prev.next = node.next;
} else {
self.head = node.next;
}
if (node.next) |next| {
next.prev = node.prev;
} else {
self.tail = node.prev;
}
node.prev = null;
node.next = null;
return true;
}
/// Returns `true` if the queue is currently empty.
/// Note that in a multi-consumer environment a return value of `false`
/// does not mean that `get` will yield a non-`null` value!
pub fn isEmpty(self: *Self) bool {
const held = self.mutex.acquire();
defer held.release();
return self.head == null;
}
/// Dumps the contents of the queue to `stderr`.
pub fn dump(self: *Self) void {
self.dumpToStream(std.io.getStdErr().outStream()) catch return;
}
/// Dumps the contents of the queue to `stream`.
/// Up to 4 elements from the head are dumped and the tail of the queue is
/// dumped as well.
pub fn dumpToStream(self: *Self, stream: var) !void {
const S = struct {
fn dumpRecursive(
s: var,
optional_node: ?*Node,
indent: usize,
comptime depth: comptime_int,
) !void {
try s.writeByteNTimes(' ', indent);
if (optional_node) |node| {
try s.print("0x{x}={}\n", .{ @ptrToInt(node), node.data });
if (depth == 0) {
try s.print("(max depth)\n", .{});
return;
}
try dumpRecursive(s, node.next, indent + 1, depth - 1);
} else {
try s.print("(null)\n", .{});
}
}
};
const held = self.mutex.acquire();
defer held.release();
try stream.print("head: ", .{});
try S.dumpRecursive(stream, self.head, 0, 4);
try stream.print("tail: ", .{});
try S.dumpRecursive(stream, self.tail, 0, 4);
}
};
}
const Context = struct {
allocator: *std.mem.Allocator,
queue: *Queue(i32),
put_sum: isize,
get_sum: isize,
get_count: usize,
puts_done: bool,
};
// TODO add lazy evaluated build options and then put puts_per_thread behind
// some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor
// CI we would use a less aggressive setting since at 1 core, while we still
// want this test to pass, we need a smaller value since there is so much thrashing
// we would also use a less aggressive setting when running in valgrind
const puts_per_thread = 500;
const put_thread_count = 3;
test "std.atomic.Queue" {
var plenty_of_memory = try std.heap.page_allocator.alloc(u8, 300 * 1024);
defer std.heap.page_allocator.free(plenty_of_memory);
var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
var a = &fixed_buffer_allocator.allocator;
var queue = Queue(i32).init();
var context = Context{
.allocator = a,
.queue = &queue,
.put_sum = 0,
.get_sum = 0,
.puts_done = false,
.get_count = 0,
};
if (builtin.single_threaded) {
expect(context.queue.isEmpty());
{
var i: usize = 0;
while (i < put_thread_count) : (i += 1) {
expect(startPuts(&context) == 0);
}
}
expect(!context.queue.isEmpty());
context.puts_done = true;
{
var i: usize = 0;
while (i < put_thread_count) : (i += 1) {
expect(startGets(&context) == 0);
}
}
expect(context.queue.isEmpty());
} else {
expect(context.queue.isEmpty());
var putters: [put_thread_count]*std.Thread = undefined;
for (putters) |*t| {
t.* = try std.Thread.spawn(&context, startPuts);
}
var getters: [put_thread_count]*std.Thread = undefined;
for (getters) |*t| {
t.* = try std.Thread.spawn(&context, startGets);
}
for (putters) |t|
t.wait();
@atomicStore(bool, &context.puts_done, true, .SeqCst);
for (getters) |t|
t.wait();
expect(context.queue.isEmpty());
}
if (context.put_sum != context.get_sum) {
std.debug.panic("failure\nput_sum:{} != get_sum:{}", .{ context.put_sum, context.get_sum });
}
if (context.get_count != puts_per_thread * put_thread_count) {
std.debug.panic("failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}", .{
context.get_count,
@as(u32, puts_per_thread),
@as(u32, put_thread_count),
});
}
}
fn startPuts(ctx: *Context) u8 {
var put_count: usize = puts_per_thread;
var r = std.rand.DefaultPrng.init(0xdeadbeef);
while (put_count != 0) : (put_count -= 1) {
std.time.sleep(1); // let the os scheduler be our fuzz
const x = @bitCast(i32, r.random.int(u32));
const node = ctx.allocator.create(Queue(i32).Node) catch unreachable;
node.* = .{
.prev = undefined,
.next = undefined,
.data = x,
};
ctx.queue.put(node);
_ = @atomicRmw(isize, &ctx.put_sum, .Add, x, .SeqCst);
}
return 0;
}
fn startGets(ctx: *Context) u8 {
while (true) {
const last = @atomicLoad(bool, &ctx.puts_done, .SeqCst);
while (ctx.queue.get()) |node| {
std.time.sleep(1); // let the os scheduler be our fuzz
_ = @atomicRmw(isize, &ctx.get_sum, .Add, node.data, .SeqCst);
_ = @atomicRmw(usize, &ctx.get_count, .Add, 1, .SeqCst);
}
if (last) return 0;
}
}
test "std.atomic.Queue single-threaded" {
var queue = Queue(i32).init();
expect(queue.isEmpty());
var node_0 = Queue(i32).Node{
.data = 0,
.next = undefined,
.prev = undefined,
};
queue.put(&node_0);
expect(!queue.isEmpty());
var node_1 = Queue(i32).Node{
.data = 1,
.next = undefined,
.prev = undefined,
};
queue.put(&node_1);
expect(!queue.isEmpty());
expect(queue.get().?.data == 0);
expect(!queue.isEmpty());
var node_2 = Queue(i32).Node{
.data = 2,
.next = undefined,
.prev = undefined,
};
queue.put(&node_2);
expect(!queue.isEmpty());
var node_3 = Queue(i32).Node{
.data = 3,
.next = undefined,
.prev = undefined,
};
queue.put(&node_3);
expect(!queue.isEmpty());
expect(queue.get().?.data == 1);
expect(!queue.isEmpty());
expect(queue.get().?.data == 2);
expect(!queue.isEmpty());
var node_4 = Queue(i32).Node{
.data = 4,
.next = undefined,
.prev = undefined,
};
queue.put(&node_4);
expect(!queue.isEmpty());
expect(queue.get().?.data == 3);
node_3.next = null;
expect(!queue.isEmpty());
expect(queue.get().?.data == 4);
expect(queue.isEmpty());
expect(queue.get() == null);
expect(queue.isEmpty());
}
test "std.atomic.Queue dump" {
const mem = std.mem;
var buffer: [1024]u8 = undefined;
var expected_buffer: [1024]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buffer);
var queue = Queue(i32).init();
// Test empty stream
fbs.reset();
try queue.dumpToStream(fbs.outStream());
expect(mem.eql(u8, buffer[0..fbs.pos],
\\head: (null)
\\tail: (null)
\\
));
// Test a stream with one element
var node_0 = Queue(i32).Node{
.data = 1,
.next = undefined,
.prev = undefined,
};
queue.put(&node_0);
fbs.reset();
try queue.dumpToStream(fbs.outStream());
var expected = try std.fmt.bufPrint(expected_buffer[0..],
\\head: 0x{x}=1
\\ (null)
\\tail: 0x{x}=1
\\ (null)
\\
, .{ @ptrToInt(queue.head), @ptrToInt(queue.tail) });
expect(mem.eql(u8, buffer[0..fbs.pos], expected));
// Test a stream with two elements
var node_1 = Queue(i32).Node{
.data = 2,
.next = undefined,
.prev = undefined,
};
queue.put(&node_1);
fbs.reset();
try queue.dumpToStream(fbs.outStream());
expected = try std.fmt.bufPrint(expected_buffer[0..],
\\head: 0x{x}=1
\\ 0x{x}=2
\\ (null)
\\tail: 0x{x}=2
\\ (null)
\\
, .{ @ptrToInt(queue.head), @ptrToInt(queue.head.?.next), @ptrToInt(queue.tail) });
expect(mem.eql(u8, buffer[0..fbs.pos], expected));
}