zig/lib/std/build/InstallRawStep.zig
2021-12-06 14:55:35 -06:00

530 lines
18 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const ArrayListUnmanaged = std.ArrayListUnmanaged;
const Builder = std.build.Builder;
const File = std.fs.File;
const InstallDir = std.build.InstallDir;
const LibExeObjStep = std.build.LibExeObjStep;
const Step = std.build.Step;
const elf = std.elf;
const fs = std.fs;
const io = std.io;
const sort = std.sort;
const BinaryElfSection = struct {
elfOffset: u64,
binaryOffset: u64,
fileSize: usize,
name: ?[]const u8,
segment: ?*BinaryElfSegment,
};
const BinaryElfSegment = struct {
physicalAddress: u64,
virtualAddress: u64,
elfOffset: u64,
binaryOffset: u64,
fileSize: usize,
firstSection: ?*BinaryElfSection,
};
const BinaryElfOutput = struct {
segments: ArrayListUnmanaged(*BinaryElfSegment),
sections: ArrayListUnmanaged(*BinaryElfSection),
allocator: Allocator,
shstrtab: ?[]const u8,
const Self = @This();
pub fn deinit(self: *Self) void {
if (self.shstrtab) |shstrtab|
self.allocator.free(shstrtab);
self.sections.deinit(self.allocator);
self.segments.deinit(self.allocator);
}
pub fn parse(allocator: Allocator, elf_file: File) !Self {
var self: Self = .{
.segments = .{},
.sections = .{},
.allocator = allocator,
.shstrtab = null,
};
errdefer self.sections.deinit(allocator);
errdefer self.segments.deinit(allocator);
const elf_hdr = try std.elf.Header.read(&elf_file);
self.shstrtab = blk: {
if (elf_hdr.shstrndx >= elf_hdr.shnum) break :blk null;
var section_headers = elf_hdr.section_header_iterator(&elf_file);
var section_counter: usize = 0;
while (section_counter < elf_hdr.shstrndx) : (section_counter += 1) {
_ = (try section_headers.next()).?;
}
const shstrtab_shdr = (try section_headers.next()).?;
const buffer = try allocator.alloc(u8, shstrtab_shdr.sh_size);
errdefer allocator.free(buffer);
const num_read = try elf_file.preadAll(buffer, shstrtab_shdr.sh_offset);
if (num_read != buffer.len) return error.EndOfStream;
break :blk buffer;
};
errdefer if (self.shstrtab) |shstrtab| allocator.free(shstrtab);
var section_headers = elf_hdr.section_header_iterator(&elf_file);
while (try section_headers.next()) |section| {
if (sectionValidForOutput(section)) {
const newSection = try allocator.create(BinaryElfSection);
newSection.binaryOffset = 0;
newSection.elfOffset = section.sh_offset;
newSection.fileSize = @intCast(usize, section.sh_size);
newSection.segment = null;
newSection.name = if (self.shstrtab) |shstrtab|
std.mem.span(@ptrCast([*:0]const u8, &shstrtab[section.sh_name]))
else
null;
try self.sections.append(allocator, newSection);
}
}
var program_headers = elf_hdr.program_header_iterator(&elf_file);
while (try program_headers.next()) |phdr| {
if (phdr.p_type == elf.PT_LOAD) {
const newSegment = try allocator.create(BinaryElfSegment);
newSegment.physicalAddress = if (phdr.p_paddr != 0) phdr.p_paddr else phdr.p_vaddr;
newSegment.virtualAddress = phdr.p_vaddr;
newSegment.fileSize = @intCast(usize, phdr.p_filesz);
newSegment.elfOffset = phdr.p_offset;
newSegment.binaryOffset = 0;
newSegment.firstSection = null;
for (self.sections.items) |section| {
if (sectionWithinSegment(section, phdr)) {
if (section.segment) |sectionSegment| {
if (sectionSegment.elfOffset > newSegment.elfOffset) {
section.segment = newSegment;
}
} else {
section.segment = newSegment;
}
if (newSegment.firstSection == null) {
newSegment.firstSection = section;
}
}
}
try self.segments.append(allocator, newSegment);
}
}
sort.sort(*BinaryElfSegment, self.segments.items, {}, segmentSortCompare);
for (self.segments.items) |firstSegment, i| {
if (firstSegment.firstSection) |firstSection| {
const diff = firstSection.elfOffset - firstSegment.elfOffset;
firstSegment.elfOffset += diff;
firstSegment.fileSize += diff;
firstSegment.physicalAddress += diff;
const basePhysicalAddress = firstSegment.physicalAddress;
for (self.segments.items[i + 1 ..]) |segment| {
segment.binaryOffset = segment.physicalAddress - basePhysicalAddress;
}
break;
}
}
for (self.sections.items) |section| {
if (section.segment) |segment| {
section.binaryOffset = segment.binaryOffset + (section.elfOffset - segment.elfOffset);
}
}
sort.sort(*BinaryElfSection, self.sections.items, {}, sectionSortCompare);
return self;
}
fn sectionWithinSegment(section: *BinaryElfSection, segment: elf.Elf64_Phdr) bool {
return segment.p_offset <= section.elfOffset and (segment.p_offset + segment.p_filesz) >= (section.elfOffset + section.fileSize);
}
fn sectionValidForOutput(shdr: anytype) bool {
return shdr.sh_size > 0 and shdr.sh_type != elf.SHT_NOBITS and
((shdr.sh_flags & elf.SHF_ALLOC) == elf.SHF_ALLOC);
}
fn segmentSortCompare(context: void, left: *BinaryElfSegment, right: *BinaryElfSegment) bool {
_ = context;
if (left.physicalAddress < right.physicalAddress) {
return true;
}
if (left.physicalAddress > right.physicalAddress) {
return false;
}
return false;
}
fn sectionSortCompare(context: void, left: *BinaryElfSection, right: *BinaryElfSection) bool {
_ = context;
return left.binaryOffset < right.binaryOffset;
}
};
fn writeBinaryElfSection(elf_file: File, out_file: File, section: *BinaryElfSection) !void {
try out_file.writeFileAll(elf_file, .{
.in_offset = section.elfOffset,
.in_len = section.fileSize,
});
}
const HexWriter = struct {
prev_addr: ?u32 = null,
out_file: File,
/// Max data bytes per line of output
const MAX_PAYLOAD_LEN: u8 = 16;
fn addressParts(address: u16) [2]u8 {
const msb = @truncate(u8, address >> 8);
const lsb = @truncate(u8, address);
return [2]u8{ msb, lsb };
}
const Record = struct {
const Type = enum(u8) {
Data = 0,
EOF = 1,
ExtendedSegmentAddress = 2,
ExtendedLinearAddress = 4,
};
address: u16,
payload: union(Type) {
Data: []const u8,
EOF: void,
ExtendedSegmentAddress: [2]u8,
ExtendedLinearAddress: [2]u8,
},
fn EOF() Record {
return Record{
.address = 0,
.payload = .EOF,
};
}
fn Data(address: u32, data: []const u8) Record {
return Record{
.address = @intCast(u16, address % 0x10000),
.payload = .{ .Data = data },
};
}
fn Address(address: u32) Record {
std.debug.assert(address > 0xFFFF);
const segment = @intCast(u16, address / 0x10000);
if (address > 0xFFFFF) {
return Record{
.address = 0,
.payload = .{ .ExtendedLinearAddress = addressParts(segment) },
};
} else {
return Record{
.address = 0,
.payload = .{ .ExtendedSegmentAddress = addressParts(segment << 12) },
};
}
}
fn getPayloadBytes(self: Record) []const u8 {
return switch (self.payload) {
.Data => |d| d,
.EOF => @as([]const u8, &.{}),
.ExtendedSegmentAddress, .ExtendedLinearAddress => |*seg| seg,
};
}
fn checksum(self: Record) u8 {
const payload_bytes = self.getPayloadBytes();
var sum: u8 = @intCast(u8, payload_bytes.len);
const parts = addressParts(self.address);
sum +%= parts[0];
sum +%= parts[1];
sum +%= @enumToInt(self.payload);
for (payload_bytes) |byte| {
sum +%= byte;
}
return (sum ^ 0xFF) +% 1;
}
fn write(self: Record, file: File) File.WriteError!void {
const linesep = "\r\n";
// colon, (length, address, type, payload, checksum) as hex, CRLF
const BUFSIZE = 1 + (1 + 2 + 1 + MAX_PAYLOAD_LEN + 1) * 2 + linesep.len;
var outbuf: [BUFSIZE]u8 = undefined;
const payload_bytes = self.getPayloadBytes();
std.debug.assert(payload_bytes.len <= MAX_PAYLOAD_LEN);
const line = try std.fmt.bufPrint(&outbuf, ":{0X:0>2}{1X:0>4}{2X:0>2}{3s}{4X:0>2}" ++ linesep, .{
@intCast(u8, payload_bytes.len),
self.address,
@enumToInt(self.payload),
std.fmt.fmtSliceHexUpper(payload_bytes),
self.checksum(),
});
try file.writeAll(line);
}
};
pub fn writeSegment(self: *HexWriter, segment: *const BinaryElfSegment, elf_file: File) !void {
var buf: [MAX_PAYLOAD_LEN]u8 = undefined;
var bytes_read: usize = 0;
while (bytes_read < segment.fileSize) {
const row_address = @intCast(u32, segment.physicalAddress + bytes_read);
const remaining = segment.fileSize - bytes_read;
const to_read = @minimum(remaining, MAX_PAYLOAD_LEN);
const did_read = try elf_file.preadAll(buf[0..to_read], segment.elfOffset + bytes_read);
if (did_read < to_read) return error.UnexpectedEOF;
try self.writeDataRow(row_address, buf[0..did_read]);
bytes_read += did_read;
}
}
fn writeDataRow(self: *HexWriter, address: u32, data: []const u8) File.WriteError!void {
const record = Record.Data(address, data);
if (address > 0xFFFF and (self.prev_addr == null or record.address != self.prev_addr.?)) {
try Record.Address(address).write(self.out_file);
}
try record.write(self.out_file);
self.prev_addr = @intCast(u32, record.address + data.len);
}
fn writeEOF(self: HexWriter) File.WriteError!void {
try Record.EOF().write(self.out_file);
}
};
fn containsValidAddressRange(segments: []*BinaryElfSegment) bool {
const max_address = std.math.maxInt(u32);
for (segments) |segment| {
if (segment.fileSize > max_address or
segment.physicalAddress > max_address - segment.fileSize) return false;
}
return true;
}
fn padFile(f: fs.File, size: ?usize) !void {
if (size) |pad_size| {
const current_size = try f.getEndPos();
if (current_size < pad_size) {
try f.seekTo(pad_size - 1);
try f.writer().writeByte(0);
}
if (current_size > pad_size) {
return error.FileTooLarge; // Maybe this shouldn't be an error?
}
}
}
fn emitRaw(allocator: Allocator, elf_path: []const u8, raw_path: []const u8, options: CreateOptions) !void {
var elf_file = try fs.cwd().openFile(elf_path, .{});
defer elf_file.close();
var out_file = try fs.cwd().createFile(raw_path, .{});
defer out_file.close();
var binary_elf_output = try BinaryElfOutput.parse(allocator, elf_file);
defer binary_elf_output.deinit();
const effective_format = options.format orelse detectFormat(raw_path);
if (options.only_section_name) |target_name| {
switch (effective_format) {
// Hex format can only write segments/phdrs, sections not supported yet
.hex => return error.NotYetImplemented,
.bin => {
for (binary_elf_output.sections.items) |section| {
if (section.name) |curr_name| {
if (!std.mem.eql(u8, curr_name, target_name))
continue;
} else {
continue;
}
try writeBinaryElfSection(elf_file, out_file, section);
try padFile(out_file, options.pad_to_size);
return;
}
},
}
return error.SectionNotFound;
}
switch (effective_format) {
.bin => {
for (binary_elf_output.sections.items) |section| {
try out_file.seekTo(section.binaryOffset);
try writeBinaryElfSection(elf_file, out_file, section);
}
try padFile(out_file, options.pad_to_size);
},
.hex => {
if (binary_elf_output.segments.items.len == 0) return;
if (!containsValidAddressRange(binary_elf_output.segments.items)) {
return error.InvalidHexfileAddressRange;
}
var hex_writer = HexWriter{ .out_file = out_file };
for (binary_elf_output.sections.items) |section| {
if (section.segment) |segment| {
try hex_writer.writeSegment(segment, elf_file);
}
}
if (options.pad_to_size) |_| {
// Padding to a size in hex files isn't applicable
return error.InvalidArgument;
}
try hex_writer.writeEOF();
},
}
}
const InstallRawStep = @This();
pub const base_id = .install_raw;
pub const RawFormat = enum {
bin,
hex,
};
step: Step,
builder: *Builder,
artifact: *LibExeObjStep,
dest_dir: InstallDir,
dest_filename: []const u8,
options: CreateOptions,
output_file: std.build.GeneratedFile,
fn detectFormat(filename: []const u8) RawFormat {
if (std.mem.endsWith(u8, filename, ".hex") or std.mem.endsWith(u8, filename, ".ihex")) {
return .hex;
}
return .bin;
}
pub const CreateOptions = struct {
format: ?RawFormat = null,
dest_dir: ?InstallDir = null,
only_section_name: ?[]const u8 = null,
pad_to_size: ?usize = null,
};
pub fn create(builder: *Builder, artifact: *LibExeObjStep, dest_filename: []const u8, options: CreateOptions) *InstallRawStep {
const self = builder.allocator.create(InstallRawStep) catch unreachable;
self.* = InstallRawStep{
.step = Step.init(.install_raw, builder.fmt("install raw binary {s}", .{artifact.step.name}), builder.allocator, make),
.builder = builder,
.artifact = artifact,
.dest_dir = if (options.dest_dir) |d| d else switch (artifact.kind) {
.obj => unreachable,
.@"test" => unreachable,
.exe, .test_exe => .bin,
.lib => unreachable,
},
.dest_filename = dest_filename,
.options = options,
.output_file = std.build.GeneratedFile{ .step = &self.step },
};
self.step.dependOn(&artifact.step);
builder.pushInstalledFile(self.dest_dir, dest_filename);
return self;
}
pub fn getOutputSource(self: *const InstallRawStep) std.build.FileSource {
return std.build.FileSource{ .generated = &self.output_file };
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(InstallRawStep, "step", step);
const builder = self.builder;
if (self.artifact.target.getObjectFormat() != .elf) {
std.debug.print("InstallRawStep only works with ELF format.\n", .{});
return error.InvalidObjectFormat;
}
const full_src_path = self.artifact.getOutputSource().getPath(builder);
const full_dest_path = builder.getInstallPath(self.dest_dir, self.dest_filename);
fs.cwd().makePath(builder.getInstallPath(self.dest_dir, "")) catch unreachable;
try emitRaw(builder.allocator, full_src_path, full_dest_path, self.options);
self.output_file.path = full_dest_path;
}
test {
std.testing.refAllDecls(InstallRawStep);
}
test "Detect format from filename" {
try std.testing.expectEqual(RawFormat.hex, detectFormat("foo.hex"));
try std.testing.expectEqual(RawFormat.hex, detectFormat("foo.ihex"));
try std.testing.expectEqual(RawFormat.bin, detectFormat("foo.bin"));
try std.testing.expectEqual(RawFormat.bin, detectFormat("foo.bar"));
try std.testing.expectEqual(RawFormat.bin, detectFormat("a"));
}
test "containsValidAddressRange" {
var segment = BinaryElfSegment{
.physicalAddress = 0,
.virtualAddress = 0,
.elfOffset = 0,
.binaryOffset = 0,
.fileSize = 0,
.firstSection = null,
};
var buf: [1]*BinaryElfSegment = .{&segment};
// segment too big
segment.fileSize = std.math.maxInt(u32) + 1;
try std.testing.expect(!containsValidAddressRange(&buf));
// start address too big
segment.physicalAddress = std.math.maxInt(u32) + 1;
segment.fileSize = 2;
try std.testing.expect(!containsValidAddressRange(&buf));
// max address too big
segment.physicalAddress = std.math.maxInt(u32) - 1;
segment.fileSize = 2;
try std.testing.expect(!containsValidAddressRange(&buf));
// is ok
segment.physicalAddress = std.math.maxInt(u32) - 1;
segment.fileSize = 1;
try std.testing.expect(containsValidAddressRange(&buf));
}