zig/lib/std/hash/wyhash.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

230 lines
9.9 KiB
Zig

const std = @import("std");
const mem = std.mem;
const primes = [_]u64{
0xa0761d6478bd642f,
0xe7037ed1a0b428db,
0x8ebc6af09c88c6e3,
0x589965cc75374cc3,
0x1d8e4e27c47d124f,
};
fn read_bytes(comptime bytes: u8, data: []const u8) u64 {
const T = std.meta.Int(.unsigned, 8 * bytes);
return mem.readIntLittle(T, data[0..bytes]);
}
fn read_8bytes_swapped(data: []const u8) u64 {
return (read_bytes(4, data) << 32 | read_bytes(4, data[4..]));
}
fn mum(a: u64, b: u64) u64 {
var r = std.math.mulWide(u64, a, b);
r = (r >> 64) ^ r;
return @truncate(u64, r);
}
fn mix0(a: u64, b: u64, seed: u64) u64 {
return mum(a ^ seed ^ primes[0], b ^ seed ^ primes[1]);
}
fn mix1(a: u64, b: u64, seed: u64) u64 {
return mum(a ^ seed ^ primes[2], b ^ seed ^ primes[3]);
}
// Wyhash version which does not store internal state for handling partial buffers.
// This is needed so that we can maximize the speed for the short key case, which will
// use the non-iterative api which the public Wyhash exposes.
const WyhashStateless = struct {
seed: u64,
msg_len: usize,
pub fn init(seed: u64) WyhashStateless {
return WyhashStateless{
.seed = seed,
.msg_len = 0,
};
}
fn round(self: *WyhashStateless, b: []const u8) void {
std.debug.assert(b.len == 32);
self.seed = mix0(
read_bytes(8, b[0..]),
read_bytes(8, b[8..]),
self.seed,
) ^ mix1(
read_bytes(8, b[16..]),
read_bytes(8, b[24..]),
self.seed,
);
}
pub fn update(self: *WyhashStateless, b: []const u8) void {
std.debug.assert(b.len % 32 == 0);
var off: usize = 0;
while (off < b.len) : (off += 32) {
@call(.{ .modifier = .always_inline }, self.round, .{b[off .. off + 32]});
}
self.msg_len += b.len;
}
pub fn final(self: *WyhashStateless, b: []const u8) u64 {
std.debug.assert(b.len < 32);
const seed = self.seed;
const rem_len = @intCast(u5, b.len);
const rem_key = b[0..rem_len];
self.seed = switch (rem_len) {
0 => seed,
1 => mix0(read_bytes(1, rem_key), primes[4], seed),
2 => mix0(read_bytes(2, rem_key), primes[4], seed),
3 => mix0((read_bytes(2, rem_key) << 8) | read_bytes(1, rem_key[2..]), primes[4], seed),
4 => mix0(read_bytes(4, rem_key), primes[4], seed),
5 => mix0((read_bytes(4, rem_key) << 8) | read_bytes(1, rem_key[4..]), primes[4], seed),
6 => mix0((read_bytes(4, rem_key) << 16) | read_bytes(2, rem_key[4..]), primes[4], seed),
7 => mix0((read_bytes(4, rem_key) << 24) | (read_bytes(2, rem_key[4..]) << 8) | read_bytes(1, rem_key[6..]), primes[4], seed),
8 => mix0(read_8bytes_swapped(rem_key), primes[4], seed),
9 => mix0(read_8bytes_swapped(rem_key), read_bytes(1, rem_key[8..]), seed),
10 => mix0(read_8bytes_swapped(rem_key), read_bytes(2, rem_key[8..]), seed),
11 => mix0(read_8bytes_swapped(rem_key), (read_bytes(2, rem_key[8..]) << 8) | read_bytes(1, rem_key[10..]), seed),
12 => mix0(read_8bytes_swapped(rem_key), read_bytes(4, rem_key[8..]), seed),
13 => mix0(read_8bytes_swapped(rem_key), (read_bytes(4, rem_key[8..]) << 8) | read_bytes(1, rem_key[12..]), seed),
14 => mix0(read_8bytes_swapped(rem_key), (read_bytes(4, rem_key[8..]) << 16) | read_bytes(2, rem_key[12..]), seed),
15 => mix0(read_8bytes_swapped(rem_key), (read_bytes(4, rem_key[8..]) << 24) | (read_bytes(2, rem_key[12..]) << 8) | read_bytes(1, rem_key[14..]), seed),
16 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed),
17 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_bytes(1, rem_key[16..]), primes[4], seed),
18 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_bytes(2, rem_key[16..]), primes[4], seed),
19 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1((read_bytes(2, rem_key[16..]) << 8) | read_bytes(1, rem_key[18..]), primes[4], seed),
20 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_bytes(4, rem_key[16..]), primes[4], seed),
21 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1((read_bytes(4, rem_key[16..]) << 8) | read_bytes(1, rem_key[20..]), primes[4], seed),
22 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1((read_bytes(4, rem_key[16..]) << 16) | read_bytes(2, rem_key[20..]), primes[4], seed),
23 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1((read_bytes(4, rem_key[16..]) << 24) | (read_bytes(2, rem_key[20..]) << 8) | read_bytes(1, rem_key[22..]), primes[4], seed),
24 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), primes[4], seed),
25 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), read_bytes(1, rem_key[24..]), seed),
26 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), read_bytes(2, rem_key[24..]), seed),
27 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), (read_bytes(2, rem_key[24..]) << 8) | read_bytes(1, rem_key[26..]), seed),
28 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), read_bytes(4, rem_key[24..]), seed),
29 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), (read_bytes(4, rem_key[24..]) << 8) | read_bytes(1, rem_key[28..]), seed),
30 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), (read_bytes(4, rem_key[24..]) << 16) | read_bytes(2, rem_key[28..]), seed),
31 => mix0(read_8bytes_swapped(rem_key), read_8bytes_swapped(rem_key[8..]), seed) ^ mix1(read_8bytes_swapped(rem_key[16..]), (read_bytes(4, rem_key[24..]) << 24) | (read_bytes(2, rem_key[28..]) << 8) | read_bytes(1, rem_key[30..]), seed),
};
self.msg_len += b.len;
return mum(self.seed ^ self.msg_len, primes[4]);
}
pub fn hash(seed: u64, input: []const u8) u64 {
const aligned_len = input.len - (input.len % 32);
var c = WyhashStateless.init(seed);
@call(.{ .modifier = .always_inline }, c.update, .{input[0..aligned_len]});
return @call(.{ .modifier = .always_inline }, c.final, .{input[aligned_len..]});
}
};
/// Fast non-cryptographic 64bit hash function.
/// See https://github.com/wangyi-fudan/wyhash
pub const Wyhash = struct {
state: WyhashStateless,
buf: [32]u8,
buf_len: usize,
pub fn init(seed: u64) Wyhash {
return Wyhash{
.state = WyhashStateless.init(seed),
.buf = undefined,
.buf_len = 0,
};
}
pub fn update(self: *Wyhash, b: []const u8) void {
var off: usize = 0;
if (self.buf_len != 0 and self.buf_len + b.len >= 32) {
off += 32 - self.buf_len;
mem.copy(u8, self.buf[self.buf_len..], b[0..off]);
self.state.update(self.buf[0..]);
self.buf_len = 0;
}
const remain_len = b.len - off;
const aligned_len = remain_len - (remain_len % 32);
self.state.update(b[off .. off + aligned_len]);
mem.copy(u8, self.buf[self.buf_len..], b[off + aligned_len ..]);
self.buf_len += @intCast(u8, b[off + aligned_len ..].len);
}
pub fn final(self: *Wyhash) u64 {
const rem_key = self.buf[0..self.buf_len];
return self.state.final(rem_key);
}
pub fn hash(seed: u64, input: []const u8) u64 {
return WyhashStateless.hash(seed, input);
}
};
const expectEqual = std.testing.expectEqual;
test "test vectors" {
const hash = Wyhash.hash;
try expectEqual(hash(0, ""), 0x0);
try expectEqual(hash(1, "a"), 0xbed235177f41d328);
try expectEqual(hash(2, "abc"), 0xbe348debe59b27c3);
try expectEqual(hash(3, "message digest"), 0x37320f657213a290);
try expectEqual(hash(4, "abcdefghijklmnopqrstuvwxyz"), 0xd0b270e1d8a7019c);
try expectEqual(hash(5, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"), 0x602a1894d3bbfe7f);
try expectEqual(hash(6, "12345678901234567890123456789012345678901234567890123456789012345678901234567890"), 0x829e9c148b75970e);
}
test "test vectors streaming" {
var wh = Wyhash.init(5);
for ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") |e| {
wh.update(mem.asBytes(&e));
}
try expectEqual(wh.final(), 0x602a1894d3bbfe7f);
const pattern = "1234567890";
const count = 8;
const result = 0x829e9c148b75970e;
try expectEqual(Wyhash.hash(6, pattern ** 8), result);
wh = Wyhash.init(6);
var i: u32 = 0;
while (i < count) : (i += 1) {
wh.update(pattern);
}
try expectEqual(wh.final(), result);
}
test "iterative non-divisible update" {
var buf: [8192]u8 = undefined;
for (buf) |*e, i| {
e.* = @truncate(u8, i);
}
const seed = 0x128dad08f;
var end: usize = 32;
while (end < buf.len) : (end += 32) {
const non_iterative_hash = Wyhash.hash(seed, buf[0..end]);
var wy = Wyhash.init(seed);
var i: usize = 0;
while (i < end) : (i += 33) {
wy.update(buf[i..std.math.min(i + 33, end)]);
}
const iterative_hash = wy.final();
try std.testing.expectEqual(iterative_hash, non_iterative_hash);
}
}