zig/lib/compiler_rt/addf3.zig
Andrew Kelley c99c085d70 compiler-rt: break up functions even more
The purpose of this branch is to switch to using an object file for each
independent function, in order to make linking simpler - instead of
relying on `-ffunction-sections` and `--gc-sections`, which involves the
linker doing the work of linking everything and then undoing work via
garbage collection, this will allow the linker to only include the
compilation units that are depended on in the first place.

This commit makes progress towards that goal.
2022-06-17 16:38:59 -07:00

173 lines
6.3 KiB
Zig

const std = @import("std");
const math = std.math;
const common = @import("./common.zig");
const normalize = common.normalize;
/// Ported from:
///
/// https://github.com/llvm/llvm-project/blob/02d85149a05cb1f6dc49f0ba7a2ceca53718ae17/compiler-rt/lib/builtins/fp_add_impl.inc
pub inline fn addf3(comptime T: type, a: T, b: T) T {
const bits = @typeInfo(T).Float.bits;
const Z = std.meta.Int(.unsigned, bits);
const S = std.meta.Int(.unsigned, bits - @clz(Z, @as(Z, bits) - 1));
const typeWidth = bits;
const significandBits = math.floatMantissaBits(T);
const fractionalBits = math.floatFractionalBits(T);
const exponentBits = math.floatExponentBits(T);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
const integerBit = (@as(Z, 1) << fractionalBits);
const quietBit = integerBit >> 1;
const significandMask = (@as(Z, 1) << significandBits) - 1;
const absMask = signBit - 1;
const qnanRep = @bitCast(Z, math.nan(T)) | quietBit;
var aRep = @bitCast(Z, a);
var bRep = @bitCast(Z, b);
const aAbs = aRep & absMask;
const bAbs = bRep & absMask;
const infRep = @bitCast(Z, math.inf(T));
// Detect if a or b is zero, infinity, or NaN.
if (aAbs -% @as(Z, 1) >= infRep - @as(Z, 1) or
bAbs -% @as(Z, 1) >= infRep - @as(Z, 1))
{
// NaN + anything = qNaN
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
// anything + NaN = qNaN
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
if (aAbs == infRep) {
// +/-infinity + -/+infinity = qNaN
if ((@bitCast(Z, a) ^ @bitCast(Z, b)) == signBit) {
return @bitCast(T, qnanRep);
}
// +/-infinity + anything remaining = +/- infinity
else {
return a;
}
}
// anything remaining + +/-infinity = +/-infinity
if (bAbs == infRep) return b;
// zero + anything = anything
if (aAbs == 0) {
// but we need to get the sign right for zero + zero
if (bAbs == 0) {
return @bitCast(T, @bitCast(Z, a) & @bitCast(Z, b));
} else {
return b;
}
}
// anything + zero = anything
if (bAbs == 0) return a;
}
// Swap a and b if necessary so that a has the larger absolute value.
if (bAbs > aAbs) {
const temp = aRep;
aRep = bRep;
bRep = temp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
var aExponent = @intCast(i32, (aRep >> significandBits) & maxExponent);
var bExponent = @intCast(i32, (bRep >> significandBits) & maxExponent);
var aSignificand = aRep & significandMask;
var bSignificand = bRep & significandMask;
// Normalize any denormals, and adjust the exponent accordingly.
if (aExponent == 0) aExponent = normalize(T, &aSignificand);
if (bExponent == 0) bExponent = normalize(T, &bSignificand);
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
const resultSign = aRep & signBit;
const subtraction = (aRep ^ bRep) & signBit != 0;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize( ), but setting it twice won't hurt
// anything.)
aSignificand = (aSignificand | integerBit) << 3;
bSignificand = (bSignificand | integerBit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
const @"align" = @intCast(u32, aExponent - bExponent);
if (@"align" != 0) {
if (@"align" < typeWidth) {
const sticky = if (bSignificand << @intCast(S, typeWidth - @"align") != 0) @as(Z, 1) else 0;
bSignificand = (bSignificand >> @truncate(S, @"align")) | sticky;
} else {
bSignificand = 1; // sticky; b is known to be non-zero.
}
}
if (subtraction) {
aSignificand -= bSignificand;
// If a == -b, return +zero.
if (aSignificand == 0) return @bitCast(T, @as(Z, 0));
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if (aSignificand < integerBit << 3) {
const shift = @intCast(i32, @clz(Z, aSignificand)) - @intCast(i32, @clz(std.meta.Int(.unsigned, bits), integerBit << 3));
aSignificand <<= @intCast(S, shift);
aExponent -= shift;
}
} else { // addition
aSignificand += bSignificand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (aSignificand & (integerBit << 4) != 0) {
const sticky = aSignificand & 1;
aSignificand = aSignificand >> 1 | sticky;
aExponent += 1;
}
}
// If we have overflowed the type, return +/- infinity:
if (aExponent >= maxExponent) return @bitCast(T, infRep | resultSign);
if (aExponent <= 0) {
// Result is denormal; the exponent and round/sticky bits are zero.
// All we need to do is shift the significand and apply the correct sign.
aSignificand >>= @intCast(S, 4 - aExponent);
return @bitCast(T, resultSign | aSignificand);
}
// Low three bits are round, guard, and sticky.
const roundGuardSticky = aSignificand & 0x7;
// Shift the significand into place, and mask off the integer bit, if it's implicit.
var result = (aSignificand >> 3) & significandMask;
// Insert the exponent and sign.
result |= @intCast(Z, aExponent) << significandBits;
result |= resultSign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if (roundGuardSticky > 0x4) result += 1;
if (roundGuardSticky == 0x4) result += result & 1;
// Restore any explicit integer bit, if it was rounded off
if (significandBits != fractionalBits) {
if ((result >> significandBits) != 0) result |= integerBit;
}
return @bitCast(T, result);
}
test {
_ = @import("addf3_test.zig");
}