zig/lib/include/__clang_cuda_intrinsics.h
Andrew Kelley 1861036f3b update C language headers to LLVM 17
release/17.x branch, commit 8f4dd44097c9ae25dd203d5ac87f3b48f854bba8
2023-09-19 09:37:31 -07:00

710 lines
30 KiB
C
Vendored

/*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_INTRINSICS_H__
#define __CLANG_CUDA_INTRINSICS_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
// sm_30 intrinsics: __shfl_{up,down,xor}.
#define __SM_30_INTRINSICS_H__
#define __SM_30_INTRINSICS_HPP__
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
#pragma push_macro("__MAKE_SHUFFLES")
#define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \
__Type) \
inline __device__ int __FnName(int __val, __Type __offset, \
int __width = warpSize) { \
return __IntIntrinsic(__val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ float __FnName(float __val, __Type __offset, \
int __width = warpSize) { \
return __FloatIntrinsic(__val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned int>( \
::__FnName(static_cast<int>(__val), __offset, __width)); \
} \
inline __device__ long long __FnName(long long __val, __Type __offset, \
int __width = warpSize) { \
struct __Bits { \
int __a, __b; \
}; \
_Static_assert(sizeof(__val) == sizeof(__Bits)); \
_Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
__Bits __tmp; \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \
__tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \
long long __ret; \
memcpy(&__ret, &__tmp, sizeof(__tmp)); \
return __ret; \
} \
inline __device__ long __FnName(long __val, __Type __offset, \
int __width = warpSize) { \
_Static_assert(sizeof(long) == sizeof(long long) || \
sizeof(long) == sizeof(int)); \
if (sizeof(long) == sizeof(long long)) { \
return static_cast<long>( \
::__FnName(static_cast<long long>(__val), __offset, __width)); \
} else if (sizeof(long) == sizeof(int)) { \
return static_cast<long>( \
::__FnName(static_cast<int>(__val), __offset, __width)); \
} \
} \
inline __device__ unsigned long __FnName( \
unsigned long __val, __Type __offset, int __width = warpSize) { \
return static_cast<unsigned long>( \
::__FnName(static_cast<long>(__val), __offset, __width)); \
} \
inline __device__ unsigned long long __FnName( \
unsigned long long __val, __Type __offset, int __width = warpSize) { \
return static_cast<unsigned long long>( \
::__FnName(static_cast<long long>(__val), __offset, __width)); \
} \
inline __device__ double __FnName(double __val, __Type __offset, \
int __width = warpSize) { \
long long __tmp; \
_Static_assert(sizeof(__tmp) == sizeof(__val)); \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp = ::__FnName(__tmp, __offset, __width); \
double __ret; \
memcpy(&__ret, &__tmp, sizeof(__ret)); \
return __ret; \
}
__MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int);
// We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
// maxLane.
__MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0,
unsigned int);
__MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f,
unsigned int);
__MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f,
int);
#pragma pop_macro("__MAKE_SHUFFLES")
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
#if CUDA_VERSION >= 9000
#if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300)
// __shfl_sync_* variants available in CUDA-9
#pragma push_macro("__MAKE_SYNC_SHUFFLES")
#define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \
__Mask, __Type) \
inline __device__ int __FnName(unsigned int __mask, int __val, \
__Type __offset, int __width = warpSize) { \
return __IntIntrinsic(__mask, __val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ float __FnName(unsigned int __mask, float __val, \
__Type __offset, int __width = warpSize) { \
return __FloatIntrinsic(__mask, __val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ unsigned int __FnName(unsigned int __mask, \
unsigned int __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned int>( \
::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
} \
inline __device__ long long __FnName(unsigned int __mask, long long __val, \
__Type __offset, \
int __width = warpSize) { \
struct __Bits { \
int __a, __b; \
}; \
_Static_assert(sizeof(__val) == sizeof(__Bits)); \
_Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
__Bits __tmp; \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \
__tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \
long long __ret; \
memcpy(&__ret, &__tmp, sizeof(__tmp)); \
return __ret; \
} \
inline __device__ unsigned long long __FnName( \
unsigned int __mask, unsigned long long __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned long long>( \
::__FnName(__mask, static_cast<long long>(__val), __offset, __width)); \
} \
inline __device__ long __FnName(unsigned int __mask, long __val, \
__Type __offset, int __width = warpSize) { \
_Static_assert(sizeof(long) == sizeof(long long) || \
sizeof(long) == sizeof(int)); \
if (sizeof(long) == sizeof(long long)) { \
return static_cast<long>(::__FnName( \
__mask, static_cast<long long>(__val), __offset, __width)); \
} else if (sizeof(long) == sizeof(int)) { \
return static_cast<long>( \
::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
} \
} \
inline __device__ unsigned long __FnName( \
unsigned int __mask, unsigned long __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned long>( \
::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \
} \
inline __device__ double __FnName(unsigned int __mask, double __val, \
__Type __offset, int __width = warpSize) { \
long long __tmp; \
_Static_assert(sizeof(__tmp) == sizeof(__val)); \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp = ::__FnName(__mask, __tmp, __offset, __width); \
double __ret; \
memcpy(&__ret, &__tmp, sizeof(__ret)); \
return __ret; \
}
__MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32,
__nvvm_shfl_sync_idx_f32, 0x1f, int);
// We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
// maxLane.
__MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32,
__nvvm_shfl_sync_up_f32, 0, unsigned int);
__MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32,
__nvvm_shfl_sync_down_f32, 0x1f, unsigned int);
__MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32,
__nvvm_shfl_sync_bfly_f32, 0x1f, int);
#pragma pop_macro("__MAKE_SYNC_SHUFFLES")
inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) {
return __nvvm_bar_warp_sync(mask);
}
inline __device__ void __barrier_sync(unsigned int id) {
__nvvm_barrier_sync(id);
}
inline __device__ void __barrier_sync_count(unsigned int id,
unsigned int count) {
__nvvm_barrier_sync_cnt(id, count);
}
inline __device__ int __all_sync(unsigned int mask, int pred) {
return __nvvm_vote_all_sync(mask, pred);
}
inline __device__ int __any_sync(unsigned int mask, int pred) {
return __nvvm_vote_any_sync(mask, pred);
}
inline __device__ int __uni_sync(unsigned int mask, int pred) {
return __nvvm_vote_uni_sync(mask, pred);
}
inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) {
return __nvvm_vote_ballot_sync(mask, pred);
}
inline __device__ unsigned int __activemask() {
#if CUDA_VERSION < 9020
return __nvvm_vote_ballot(1);
#else
unsigned int mask;
asm volatile("activemask.b32 %0;" : "=r"(mask));
return mask;
#endif
}
inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) {
return __nvvm_fns(mask, base, offset);
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
// Define __match* builtins CUDA-9 headers expect to see.
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
inline __device__ unsigned int __match32_any_sync(unsigned int mask,
unsigned int value) {
return __nvvm_match_any_sync_i32(mask, value);
}
inline __device__ unsigned int
__match64_any_sync(unsigned int mask, unsigned long long value) {
return __nvvm_match_any_sync_i64(mask, value);
}
inline __device__ unsigned int
__match32_all_sync(unsigned int mask, unsigned int value, int *pred) {
return __nvvm_match_all_sync_i32p(mask, value, pred);
}
inline __device__ unsigned int
__match64_all_sync(unsigned int mask, unsigned long long value, int *pred) {
return __nvvm_match_all_sync_i64p(mask, value, pred);
}
#include "crt/sm_70_rt.hpp"
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
#endif // __CUDA_VERSION >= 9000
// sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}.
// Prevent the vanilla sm_32 intrinsics header from being included.
#define __SM_32_INTRINSICS_H__
#define __SM_32_INTRINSICS_HPP__
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); }
inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); }
inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); }
inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); }
inline __device__ long long __ldg(const long long *ptr) {
return __nvvm_ldg_ll(ptr);
}
inline __device__ unsigned char __ldg(const unsigned char *ptr) {
return __nvvm_ldg_uc(ptr);
}
inline __device__ signed char __ldg(const signed char *ptr) {
return __nvvm_ldg_uc((const unsigned char *)ptr);
}
inline __device__ unsigned short __ldg(const unsigned short *ptr) {
return __nvvm_ldg_us(ptr);
}
inline __device__ unsigned int __ldg(const unsigned int *ptr) {
return __nvvm_ldg_ui(ptr);
}
inline __device__ unsigned long __ldg(const unsigned long *ptr) {
return __nvvm_ldg_ul(ptr);
}
inline __device__ unsigned long long __ldg(const unsigned long long *ptr) {
return __nvvm_ldg_ull(ptr);
}
inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); }
inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); }
inline __device__ char2 __ldg(const char2 *ptr) {
typedef char c2 __attribute__((ext_vector_type(2)));
// We can assume that ptr is aligned at least to char2's alignment, but the
// load will assume that ptr is aligned to char2's alignment. This is only
// safe if alignof(c2) <= alignof(char2).
c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr));
char2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ char4 __ldg(const char4 *ptr) {
typedef char c4 __attribute__((ext_vector_type(4)));
c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr));
char4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ short2 __ldg(const short2 *ptr) {
typedef short s2 __attribute__((ext_vector_type(2)));
s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr));
short2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ short4 __ldg(const short4 *ptr) {
typedef short s4 __attribute__((ext_vector_type(4)));
s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr));
short4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ int2 __ldg(const int2 *ptr) {
typedef int i2 __attribute__((ext_vector_type(2)));
i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr));
int2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ int4 __ldg(const int4 *ptr) {
typedef int i4 __attribute__((ext_vector_type(4)));
i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr));
int4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ longlong2 __ldg(const longlong2 *ptr) {
typedef long long ll2 __attribute__((ext_vector_type(2)));
ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr));
longlong2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ uchar2 __ldg(const uchar2 *ptr) {
typedef unsigned char uc2 __attribute__((ext_vector_type(2)));
uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr));
uchar2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ uchar4 __ldg(const uchar4 *ptr) {
typedef unsigned char uc4 __attribute__((ext_vector_type(4)));
uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr));
uchar4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ ushort2 __ldg(const ushort2 *ptr) {
typedef unsigned short us2 __attribute__((ext_vector_type(2)));
us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr));
ushort2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ ushort4 __ldg(const ushort4 *ptr) {
typedef unsigned short us4 __attribute__((ext_vector_type(4)));
us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr));
ushort4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ uint2 __ldg(const uint2 *ptr) {
typedef unsigned int ui2 __attribute__((ext_vector_type(2)));
ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr));
uint2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ uint4 __ldg(const uint4 *ptr) {
typedef unsigned int ui4 __attribute__((ext_vector_type(4)));
ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr));
uint4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) {
typedef unsigned long long ull2 __attribute__((ext_vector_type(2)));
ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr));
ulonglong2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ float2 __ldg(const float2 *ptr) {
typedef float f2 __attribute__((ext_vector_type(2)));
f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr));
float2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ float4 __ldg(const float4 *ptr) {
typedef float f4 __attribute__((ext_vector_type(4)));
f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr));
float4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ double2 __ldg(const double2 *ptr) {
typedef double d2 __attribute__((ext_vector_type(2)));
d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr));
double2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
// TODO: Implement these as intrinsics, so the backend can work its magic on
// these. Alternatively, we could implement these as plain C and try to get
// llvm to recognize the relevant patterns.
inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned result;
asm("shf.l.wrap.b32 %0, %1, %2, %3;"
: "=r"(result)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return result;
}
inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned result;
asm("shf.l.clamp.b32 %0, %1, %2, %3;"
: "=r"(result)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return result;
}
inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned result;
asm("shf.r.wrap.b32 %0, %1, %2, %3;"
: "=r"(result)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return result;
}
inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned ret;
asm("shf.r.clamp.b32 %0, %1, %2, %3;"
: "=r"(ret)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return ret;
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
#if CUDA_VERSION >= 11000
extern "C" {
__device__ inline size_t __nv_cvta_generic_to_global_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(1))) *)__ptr;
}
__device__ inline size_t __nv_cvta_generic_to_shared_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(3))) *)__ptr;
}
__device__ inline size_t __nv_cvta_generic_to_constant_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(4))) *)__ptr;
}
__device__ inline size_t __nv_cvta_generic_to_local_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(5))) *)__ptr;
}
__device__ inline void *__nv_cvta_global_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(1))) *)__ptr;
}
__device__ inline void *__nv_cvta_shared_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(3))) *)__ptr;
}
__device__ inline void *__nv_cvta_constant_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(4))) *)__ptr;
}
__device__ inline void *__nv_cvta_local_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(5))) *)__ptr;
}
__device__ inline cuuint32_t __nvvm_get_smem_pointer(void *__ptr) {
return __nv_cvta_generic_to_shared_impl(__ptr);
}
} // extern "C"
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
__device__ inline unsigned __reduce_add_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_add(__mask, __value);
}
__device__ inline unsigned __reduce_min_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_umin(__mask, __value);
}
__device__ inline unsigned __reduce_max_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_umax(__mask, __value);
}
__device__ inline int __reduce_min_sync(unsigned __mask, int __value) {
return __nvvm_redux_sync_min(__mask, __value);
}
__device__ inline int __reduce_max_sync(unsigned __mask, int __value) {
return __nvvm_redux_sync_max(__mask, __value);
}
__device__ inline unsigned __reduce_or_sync(unsigned __mask, unsigned __value) {
return __nvvm_redux_sync_or(__mask, __value);
}
__device__ inline unsigned __reduce_and_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_and(__mask, __value);
}
__device__ inline unsigned __reduce_xor_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_xor(__mask, __value);
}
__device__ inline void __nv_memcpy_async_shared_global_4(void *__dst,
const void *__src,
unsigned __src_size) {
__nvvm_cp_async_ca_shared_global_4(
(void __attribute__((address_space(3))) *)__dst,
(const void __attribute__((address_space(1))) *)__src, __src_size);
}
__device__ inline void __nv_memcpy_async_shared_global_8(void *__dst,
const void *__src,
unsigned __src_size) {
__nvvm_cp_async_ca_shared_global_8(
(void __attribute__((address_space(3))) *)__dst,
(const void __attribute__((address_space(1))) *)__src, __src_size);
}
__device__ inline void __nv_memcpy_async_shared_global_16(void *__dst,
const void *__src,
unsigned __src_size) {
__nvvm_cp_async_ca_shared_global_16(
(void __attribute__((address_space(3))) *)__dst,
(const void __attribute__((address_space(1))) *)__src, __src_size);
}
__device__ inline void *
__nv_associate_access_property(const void *__ptr, unsigned long long __prop) {
// TODO: it appears to provide compiler with some sort of a hint. We do not
// know what exactly it is supposed to do. However, CUDA headers suggest that
// just passing through __ptr should not affect correctness. They do so on
// pre-sm80 GPUs where this builtin is not available.
return (void*)__ptr;
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
__device__ inline unsigned __isCtaShared(const void *ptr) {
return __isShared(ptr);
}
__device__ inline unsigned __isClusterShared(const void *__ptr) {
return __nvvm_isspacep_shared_cluster(__ptr);
}
__device__ inline void *__cluster_map_shared_rank(const void *__ptr,
unsigned __rank) {
return __nvvm_mapa((void *)__ptr, __rank);
}
__device__ inline unsigned __cluster_query_shared_rank(const void *__ptr) {
return __nvvm_getctarank((void *)__ptr);
}
__device__ inline uint2
__cluster_map_shared_multicast(const void *__ptr,
unsigned int __cluster_cta_mask) {
return make_uint2((unsigned)__cvta_generic_to_shared(__ptr),
__cluster_cta_mask);
}
__device__ inline unsigned __clusterDimIsSpecified() {
return __nvvm_is_explicit_cluster();
}
__device__ inline dim3 __clusterDim() {
return dim3(__nvvm_read_ptx_sreg_cluster_nctaid_x(),
__nvvm_read_ptx_sreg_cluster_nctaid_y(),
__nvvm_read_ptx_sreg_cluster_nctaid_z());
}
__device__ inline dim3 __clusterRelativeBlockIdx() {
return dim3(__nvvm_read_ptx_sreg_cluster_ctaid_x(),
__nvvm_read_ptx_sreg_cluster_ctaid_y(),
__nvvm_read_ptx_sreg_cluster_ctaid_z());
}
__device__ inline dim3 __clusterGridDimInClusters() {
return dim3(__nvvm_read_ptx_sreg_nclusterid_x(),
__nvvm_read_ptx_sreg_nclusterid_y(),
__nvvm_read_ptx_sreg_nclusterid_z());
}
__device__ inline dim3 __clusterIdx() {
return dim3(__nvvm_read_ptx_sreg_clusterid_x(),
__nvvm_read_ptx_sreg_clusterid_y(),
__nvvm_read_ptx_sreg_clusterid_z());
}
__device__ inline unsigned __clusterRelativeBlockRank() {
return __nvvm_read_ptx_sreg_cluster_ctarank();
}
__device__ inline unsigned __clusterSizeInBlocks() {
return __nvvm_read_ptx_sreg_cluster_nctarank();
}
__device__ inline void __cluster_barrier_arrive() {
__nvvm_barrier_cluster_arrive();
}
__device__ inline void __cluster_barrier_arrive_relaxed() {
__nvvm_barrier_cluster_arrive_relaxed();
}
__device__ inline void __cluster_barrier_wait() {
__nvvm_barrier_cluster_wait();
}
__device__ inline void __threadfence_cluster() { __nvvm_fence_sc_cluster(); }
__device__ inline float2 atomicAdd(float2 *__ptr, float2 __val) {
float2 __ret;
__asm__("atom.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
: "=f"(__ret.x), "=f"(__ret.y)
: "l"(__ptr), "f"(__val.x), "f"(__val.y));
return __ret;
}
__device__ inline float2 atomicAdd_block(float2 *__ptr, float2 __val) {
float2 __ret;
__asm__("atom.cta.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
: "=f"(__ret.x), "=f"(__ret.y)
: "l"(__ptr), "f"(__val.x), "f"(__val.y));
return __ret;
}
__device__ inline float2 atomicAdd_system(float2 *__ptr, float2 __val) {
float2 __ret;
__asm__("atom.sys.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
: "=f"(__ret.x), "=f"(__ret.y)
: "l"(__ptr), "f"(__val.x), "f"(__val.y));
return __ret;
}
__device__ inline float4 atomicAdd(float4 *__ptr, float4 __val) {
float4 __ret;
__asm__("atom.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
: "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
: "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
return __ret;
}
__device__ inline float4 atomicAdd_block(float4 *__ptr, float4 __val) {
float4 __ret;
__asm__(
"atom.cta.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
: "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
: "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
return __ret;
}
__device__ inline float4 atomicAdd_system(float4 *__ptr, float4 __val) {
float4 __ret;
__asm__(
"atom.sys.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
: "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
: "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)
:);
return __ret;
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
#endif // CUDA_VERSION >= 11000
#endif // defined(__CLANG_CUDA_INTRINSICS_H__)