zig/lib/std/math/big/int.zig
2024-07-12 00:46:03 -07:00

4228 lines
150 KiB
Zig

const std = @import("../../std.zig");
const builtin = @import("builtin");
const math = std.math;
const Limb = std.math.big.Limb;
const limb_bits = @typeInfo(Limb).Int.bits;
const HalfLimb = std.math.big.HalfLimb;
const half_limb_bits = @typeInfo(HalfLimb).Int.bits;
const DoubleLimb = std.math.big.DoubleLimb;
const SignedDoubleLimb = std.math.big.SignedDoubleLimb;
const Log2Limb = std.math.big.Log2Limb;
const Allocator = std.mem.Allocator;
const mem = std.mem;
const maxInt = std.math.maxInt;
const minInt = std.math.minInt;
const assert = std.debug.assert;
const Endian = std.builtin.Endian;
const Signedness = std.builtin.Signedness;
const native_endian = builtin.cpu.arch.endian();
const debug_safety = false;
/// Returns the number of limbs needed to store `scalar`, which must be a
/// primitive integer value.
/// Note: A comptime-known upper bound of this value that may be used
/// instead if `scalar` is not already comptime-known is
/// `calcTwosCompLimbCount(@typeInfo(@TypeOf(scalar)).Int.bits)`
pub fn calcLimbLen(scalar: anytype) usize {
if (scalar == 0) {
return 1;
}
const w_value = @abs(scalar);
return @as(usize, @intCast(@divFloor(@as(Limb, @intCast(math.log2(w_value))), limb_bits) + 1));
}
pub fn calcToStringLimbsBufferLen(a_len: usize, base: u8) usize {
if (math.isPowerOfTwo(base))
return 0;
return a_len + 2 + a_len + calcDivLimbsBufferLen(a_len, 1);
}
pub fn calcDivLimbsBufferLen(a_len: usize, b_len: usize) usize {
return a_len + b_len + 4;
}
pub fn calcMulLimbsBufferLen(a_len: usize, b_len: usize, aliases: usize) usize {
return aliases * @max(a_len, b_len);
}
pub fn calcMulWrapLimbsBufferLen(bit_count: usize, a_len: usize, b_len: usize, aliases: usize) usize {
const req_limbs = calcTwosCompLimbCount(bit_count);
return aliases * @min(req_limbs, @max(a_len, b_len));
}
pub fn calcSetStringLimbsBufferLen(base: u8, string_len: usize) usize {
const limb_count = calcSetStringLimbCount(base, string_len);
return calcMulLimbsBufferLen(limb_count, limb_count, 2);
}
pub fn calcSetStringLimbCount(base: u8, string_len: usize) usize {
return (string_len + (limb_bits / base - 1)) / (limb_bits / base);
}
pub fn calcPowLimbsBufferLen(a_bit_count: usize, y: usize) usize {
// The 2 accounts for the minimum space requirement for llmulacc
return 2 + (a_bit_count * y + (limb_bits - 1)) / limb_bits;
}
pub fn calcSqrtLimbsBufferLen(a_bit_count: usize) usize {
const a_limb_count = (a_bit_count - 1) / limb_bits + 1;
const shift = (a_bit_count + 1) / 2;
const u_s_rem_limb_count = 1 + ((shift / limb_bits) + 1);
return a_limb_count + 3 * u_s_rem_limb_count + calcDivLimbsBufferLen(a_limb_count, u_s_rem_limb_count);
}
// Compute the number of limbs required to store a 2s-complement number of `bit_count` bits.
pub fn calcTwosCompLimbCount(bit_count: usize) usize {
return std.math.divCeil(usize, bit_count, @bitSizeOf(Limb)) catch unreachable;
}
/// a + b * c + *carry, sets carry to the overflow bits
pub fn addMulLimbWithCarry(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb {
@setRuntimeSafety(debug_safety);
// ov1[0] = a + *carry
const ov1 = @addWithOverflow(a, carry.*);
// r2 = b * c
const bc = @as(DoubleLimb, math.mulWide(Limb, b, c));
const r2 = @as(Limb, @truncate(bc));
const c2 = @as(Limb, @truncate(bc >> limb_bits));
// ov2[0] = ov1[0] + r2
const ov2 = @addWithOverflow(ov1[0], r2);
// This never overflows, c1, c3 are either 0 or 1 and if both are 1 then
// c2 is at least <= maxInt(Limb) - 2.
carry.* = ov1[1] + c2 + ov2[1];
return ov2[0];
}
/// a - b * c - *carry, sets carry to the overflow bits
fn subMulLimbWithBorrow(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb {
// ov1[0] = a - *carry
const ov1 = @subWithOverflow(a, carry.*);
// r2 = b * c
const bc = @as(DoubleLimb, std.math.mulWide(Limb, b, c));
const r2 = @as(Limb, @truncate(bc));
const c2 = @as(Limb, @truncate(bc >> limb_bits));
// ov2[0] = ov1[0] - r2
const ov2 = @subWithOverflow(ov1[0], r2);
carry.* = ov1[1] + c2 + ov2[1];
return ov2[0];
}
/// Used to indicate either limit of a 2s-complement integer.
pub const TwosCompIntLimit = enum {
// The low limit, either 0x00 (unsigned) or (-)0x80 (signed) for an 8-bit integer.
min,
// The high limit, either 0xFF (unsigned) or 0x7F (signed) for an 8-bit integer.
max,
};
/// A arbitrary-precision big integer, with a fixed set of mutable limbs.
pub const Mutable = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
/// These are allocated limbs; the `len` field tells the valid range.
limbs: []Limb,
len: usize,
positive: bool,
pub fn toConst(self: Mutable) Const {
return .{
.limbs = self.limbs[0..self.len],
.positive = self.positive,
};
}
/// Returns true if `a == 0`.
pub fn eqlZero(self: Mutable) bool {
return self.toConst().eqlZero();
}
/// Asserts that the allocator owns the limbs memory. If this is not the case,
/// use `toConst().toManaged()`.
pub fn toManaged(self: Mutable, allocator: Allocator) Managed {
return .{
.allocator = allocator,
.limbs = self.limbs,
.metadata = if (self.positive)
self.len & ~Managed.sign_bit
else
self.len | Managed.sign_bit,
};
}
/// `value` is a primitive integer type.
/// Asserts the value fits within the provided `limbs_buffer`.
/// Note: `calcLimbLen` can be used to figure out how big an array to allocate for `limbs_buffer`.
pub fn init(limbs_buffer: []Limb, value: anytype) Mutable {
limbs_buffer[0] = 0;
var self: Mutable = .{
.limbs = limbs_buffer,
.len = 1,
.positive = true,
};
self.set(value);
return self;
}
/// Copies the value of a Const to an existing Mutable so that they both have the same value.
/// Asserts the value fits in the limbs buffer.
pub fn copy(self: *Mutable, other: Const) void {
if (self.limbs.ptr != other.limbs.ptr) {
@memcpy(self.limbs[0..other.limbs.len], other.limbs[0..other.limbs.len]);
}
self.positive = other.positive;
self.len = other.limbs.len;
}
/// Efficiently swap an Mutable with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Mutable, other: *Mutable) void {
mem.swap(Mutable, self, other);
}
pub fn dump(self: Mutable) void {
for (self.limbs[0..self.len]) |limb| {
std.debug.print("{x} ", .{limb});
}
std.debug.print("capacity={} positive={}\n", .{ self.limbs.len, self.positive });
}
/// Clones an Mutable and returns a new Mutable with the same value. The new Mutable is a deep copy and
/// can be modified separately from the original.
/// Asserts that limbs is big enough to store the value.
pub fn clone(other: Mutable, limbs: []Limb) Mutable {
@memcpy(limbs[0..other.len], other.limbs[0..other.len]);
return .{
.limbs = limbs,
.len = other.len,
.positive = other.positive,
};
}
pub fn negate(self: *Mutable) void {
self.positive = !self.positive;
}
/// Modify to become the absolute value
pub fn abs(self: *Mutable) void {
self.positive = true;
}
/// Sets the Mutable to value. Value must be an primitive integer type.
/// Asserts the value fits within the limbs buffer.
/// Note: `calcLimbLen` can be used to figure out how big the limbs buffer
/// needs to be to store a specific value.
pub fn set(self: *Mutable, value: anytype) void {
const T = @TypeOf(value);
const needed_limbs = calcLimbLen(value);
assert(needed_limbs <= self.limbs.len); // value too big
self.len = needed_limbs;
self.positive = value >= 0;
switch (@typeInfo(T)) {
.Int => |info| {
var w_value = @abs(value);
if (info.bits <= limb_bits) {
self.limbs[0] = w_value;
} else {
var i: usize = 0;
while (true) : (i += 1) {
self.limbs[i] = @as(Limb, @truncate(w_value));
w_value >>= limb_bits;
if (w_value == 0) break;
}
}
},
.ComptimeInt => {
comptime var w_value = @abs(value);
if (w_value <= maxInt(Limb)) {
self.limbs[0] = w_value;
} else {
const mask = (1 << limb_bits) - 1;
comptime var i = 0;
inline while (true) : (i += 1) {
self.limbs[i] = w_value & mask;
w_value >>= limb_bits;
if (w_value == 0) break;
}
}
},
else => @compileError("cannot set Mutable using type " ++ @typeName(T)),
}
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Asserts there is enough memory for the value in `self.limbs`. An upper bound on number of limbs can
/// be determined with `calcSetStringLimbCount`.
/// Asserts the base is in the range [2, 16].
///
/// Returns an error if the value has invalid digits for the requested base.
///
/// `limbs_buffer` is used for temporary storage. The size required can be found with
/// `calcSetStringLimbsBufferLen`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn setString(
self: *Mutable,
base: u8,
value: []const u8,
limbs_buffer: []Limb,
allocator: ?Allocator,
) error{InvalidCharacter}!void {
assert(base >= 2 and base <= 16);
var i: usize = 0;
var positive = true;
if (value.len > 0 and value[0] == '-') {
positive = false;
i += 1;
}
const ap_base: Const = .{ .limbs = &[_]Limb{base}, .positive = true };
self.set(0);
for (value[i..]) |ch| {
if (ch == '_') {
continue;
}
const d = try std.fmt.charToDigit(ch, base);
const ap_d: Const = .{ .limbs = &[_]Limb{d}, .positive = true };
self.mul(self.toConst(), ap_base, limbs_buffer, allocator);
self.add(self.toConst(), ap_d);
}
self.positive = positive;
}
/// Set self to either bound of a 2s-complement integer.
/// Note: The result is still sign-magnitude, not twos complement! In order to convert the
/// result to twos complement, it is sufficient to take the absolute value.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn setTwosCompIntLimit(
r: *Mutable,
limit: TwosCompIntLimit,
signedness: Signedness,
bit_count: usize,
) void {
// Handle zero-bit types.
if (bit_count == 0) {
r.set(0);
return;
}
const req_limbs = calcTwosCompLimbCount(bit_count);
const bit: Log2Limb = @truncate(bit_count - 1);
const signmask = @as(Limb, 1) << bit; // 0b0..010..0 where 1 is the sign bit.
const mask = (signmask << 1) -% 1; // 0b0..011..1 where the leftmost 1 is the sign bit.
r.positive = true;
switch (signedness) {
.signed => switch (limit) {
.min => {
// Negative bound, signed = -0x80.
r.len = req_limbs;
@memset(r.limbs[0 .. r.len - 1], 0);
r.limbs[r.len - 1] = signmask;
r.positive = false;
},
.max => {
// Positive bound, signed = 0x7F
// Note, in this branch we need to normalize because the first bit is
// supposed to be 0.
// Special case for 1-bit integers.
if (bit_count == 1) {
r.set(0);
} else {
const new_req_limbs = calcTwosCompLimbCount(bit_count - 1);
const msb = @as(Log2Limb, @truncate(bit_count - 2));
const new_signmask = @as(Limb, 1) << msb; // 0b0..010..0 where 1 is the sign bit.
const new_mask = (new_signmask << 1) -% 1; // 0b0..001..1 where the rightmost 0 is the sign bit.
r.len = new_req_limbs;
@memset(r.limbs[0 .. r.len - 1], maxInt(Limb));
r.limbs[r.len - 1] = new_mask;
}
},
},
.unsigned => switch (limit) {
.min => {
// Min bound, unsigned = 0x00
r.set(0);
},
.max => {
// Max bound, unsigned = 0xFF
r.len = req_limbs;
@memset(r.limbs[0 .. r.len - 1], maxInt(Limb));
r.limbs[r.len - 1] = mask;
},
},
}
}
/// r = a + scalar
///
/// r and a may be aliases.
/// scalar is a primitive integer type.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `@max(a.limbs.len, calcLimbLen(scalar)) + 1`.
pub fn addScalar(r: *Mutable, a: Const, scalar: anytype) void {
// Normally we could just determine the number of limbs needed with calcLimbLen,
// but that is not comptime-known when scalar is not a comptime_int. Instead, we
// use calcTwosCompLimbCount for a non-comptime_int scalar, which can be pessimistic
// in the case that scalar happens to be small in magnitude within its type, but it
// is well worth being able to use the stack and not needing an allocator passed in.
// Note that Mutable.init still sets len to calcLimbLen(scalar) in any case.
const limb_len = comptime switch (@typeInfo(@TypeOf(scalar))) {
.ComptimeInt => calcLimbLen(scalar),
.Int => |info| calcTwosCompLimbCount(info.bits),
else => @compileError("expected scalar to be an int"),
};
var limbs: [limb_len]Limb = undefined;
const operand = init(&limbs, scalar).toConst();
return add(r, a, operand);
}
/// Base implementation for addition. Adds `@max(a.limbs.len, b.limbs.len)` elements from a and b,
/// and returns whether any overflow occurred.
/// r, a and b may be aliases.
///
/// Asserts r has enough elements to hold the result. The upper bound is `@max(a.limbs.len, b.limbs.len)`.
fn addCarry(r: *Mutable, a: Const, b: Const) bool {
if (a.eqlZero()) {
r.copy(b);
return false;
} else if (b.eqlZero()) {
r.copy(a);
return false;
} else if (a.positive != b.positive) {
if (a.positive) {
// (a) + (-b) => a - b
return r.subCarry(a, b.abs());
} else {
// (-a) + (b) => b - a
return r.subCarry(b, a.abs());
}
} else {
r.positive = a.positive;
if (a.limbs.len >= b.limbs.len) {
const c = lladdcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
return c != 0;
} else {
const c = lladdcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
return c != 0;
}
}
}
/// r = a + b
///
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `@max(a.limbs.len, b.limbs.len) + 1`.
pub fn add(r: *Mutable, a: Const, b: Const) void {
if (r.addCarry(a, b)) {
// Fix up the result. Note that addCarry normalizes by a.limbs.len or b.limbs.len,
// so we need to set the length here.
const msl = @max(a.limbs.len, b.limbs.len);
// `[add|sub]Carry` normalizes by `msl`, so we need to fix up the result manually here.
// Note, the fact that it normalized means that the intermediary limbs are zero here.
r.len = msl + 1;
r.limbs[msl] = 1; // If this panics, there wasn't enough space in `r`.
}
}
/// r = a + b with 2s-complement wrapping semantics. Returns whether overflow occurred.
/// r, a and b may be aliases
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn addWrap(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) bool {
const req_limbs = calcTwosCompLimbCount(bit_count);
// Slice of the upper bits if they exist, these will be ignored and allows us to use addCarry to determine
// if an overflow occurred.
const x = Const{
.positive = a.positive,
.limbs = a.limbs[0..@min(req_limbs, a.limbs.len)],
};
const y = Const{
.positive = b.positive,
.limbs = b.limbs[0..@min(req_limbs, b.limbs.len)],
};
var carry_truncated = false;
if (r.addCarry(x, y)) {
// There are two possibilities here:
// - We overflowed req_limbs. In this case, the carry is ignored, as it would be removed by
// truncate anyway.
// - a and b had less elements than req_limbs, and those were overflowed. This case needs to be handled.
// Note: after this we still might need to wrap.
const msl = @max(a.limbs.len, b.limbs.len);
if (msl < req_limbs) {
r.limbs[msl] = 1;
r.len = req_limbs;
@memset(r.limbs[msl + 1 .. req_limbs], 0);
} else {
carry_truncated = true;
}
}
if (!r.toConst().fitsInTwosComp(signedness, bit_count)) {
r.truncate(r.toConst(), signedness, bit_count);
return true;
}
return carry_truncated;
}
/// r = a + b with 2s-complement saturating semantics.
/// r, a and b may be aliases.
///
/// Assets the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn addSat(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) void {
const req_limbs = calcTwosCompLimbCount(bit_count);
// Slice of the upper bits if they exist, these will be ignored and allows us to use addCarry to determine
// if an overflow occurred.
const x = Const{
.positive = a.positive,
.limbs = a.limbs[0..@min(req_limbs, a.limbs.len)],
};
const y = Const{
.positive = b.positive,
.limbs = b.limbs[0..@min(req_limbs, b.limbs.len)],
};
if (r.addCarry(x, y)) {
// There are two possibilities here:
// - We overflowed req_limbs, in which case we need to saturate.
// - a and b had less elements than req_limbs, and those were overflowed.
// Note: In this case, might _also_ need to saturate.
const msl = @max(a.limbs.len, b.limbs.len);
if (msl < req_limbs) {
r.limbs[msl] = 1;
r.len = req_limbs;
// Note: Saturation may still be required if msl == req_limbs - 1
} else {
// Overflowed req_limbs, definitely saturate.
r.setTwosCompIntLimit(if (r.positive) .max else .min, signedness, bit_count);
}
}
// Saturate if the result didn't fit.
r.saturate(r.toConst(), signedness, bit_count);
}
/// Base implementation for subtraction. Subtracts `@max(a.limbs.len, b.limbs.len)` elements from a and b,
/// and returns whether any overflow occurred.
/// r, a and b may be aliases.
///
/// Asserts r has enough elements to hold the result. The upper bound is `@max(a.limbs.len, b.limbs.len)`.
fn subCarry(r: *Mutable, a: Const, b: Const) bool {
if (a.eqlZero()) {
r.copy(b);
r.positive = !b.positive;
return false;
} else if (b.eqlZero()) {
r.copy(a);
return false;
} else if (a.positive != b.positive) {
if (a.positive) {
// (a) - (-b) => a + b
return r.addCarry(a, b.abs());
} else {
// (-a) - (b) => -a + -b
return r.addCarry(a, b.negate());
}
} else if (a.positive) {
if (a.order(b) != .lt) {
// (a) - (b) => a - b
const c = llsubcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
r.positive = true;
return c != 0;
} else {
// (a) - (b) => -b + a => -(b - a)
const c = llsubcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
r.positive = false;
return c != 0;
}
} else {
if (a.order(b) == .lt) {
// (-a) - (-b) => -(a - b)
const c = llsubcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
r.positive = false;
return c != 0;
} else {
// (-a) - (-b) => --b + -a => b - a
const c = llsubcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
r.positive = true;
return c != 0;
}
}
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `@max(a.limbs.len, b.limbs.len) + 1`. The +1 is not needed if both operands are positive.
pub fn sub(r: *Mutable, a: Const, b: Const) void {
r.add(a, b.negate());
}
/// r = a - b with 2s-complement wrapping semantics. Returns whether any overflow occurred.
///
/// r, a and b may be aliases
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn subWrap(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) bool {
return r.addWrap(a, b.negate(), signedness, bit_count);
}
/// r = a - b with 2s-complement saturating semantics.
/// r, a and b may be aliases.
///
/// Assets the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn subSat(r: *Mutable, a: Const, b: Const, signedness: Signedness, bit_count: usize) void {
r.addSat(a, b.negate(), signedness, bit_count);
}
/// rma = a * b
///
/// `rma` may alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcMulLimbsBufferLen`.
pub fn mul(rma: *Mutable, a: Const, b: Const, limbs_buffer: []Limb, allocator: ?Allocator) void {
var buf_index: usize = 0;
const a_copy = if (rma.limbs.ptr == a.limbs.ptr) blk: {
const start = buf_index;
@memcpy(limbs_buffer[buf_index..][0..a.limbs.len], a.limbs);
buf_index += a.limbs.len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else a;
const b_copy = if (rma.limbs.ptr == b.limbs.ptr) blk: {
const start = buf_index;
@memcpy(limbs_buffer[buf_index..][0..b.limbs.len], b.limbs);
buf_index += b.limbs.len;
break :blk b.toMutable(limbs_buffer[start..buf_index]).toConst();
} else b;
return rma.mulNoAlias(a_copy, b_copy, allocator);
}
/// rma = a * b
///
/// `rma` may not alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn mulNoAlias(rma: *Mutable, a: Const, b: Const, allocator: ?Allocator) void {
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != b.limbs.ptr); // illegal aliasing
if (a.limbs.len == 1 and b.limbs.len == 1) {
const ov = @mulWithOverflow(a.limbs[0], b.limbs[0]);
rma.limbs[0] = ov[0];
if (ov[1] == 0) {
rma.len = 1;
rma.positive = (a.positive == b.positive);
return;
}
}
@memset(rma.limbs[0 .. a.limbs.len + b.limbs.len], 0);
llmulacc(.add, allocator, rma.limbs, a.limbs, b.limbs);
rma.normalize(a.limbs.len + b.limbs.len);
rma.positive = (a.positive == b.positive);
}
/// rma = a * b with 2s-complement wrapping semantics.
///
/// `rma` may alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcMulWrapLimbsBufferLen`.
pub fn mulWrap(
rma: *Mutable,
a: Const,
b: Const,
signedness: Signedness,
bit_count: usize,
limbs_buffer: []Limb,
allocator: ?Allocator,
) void {
var buf_index: usize = 0;
const req_limbs = calcTwosCompLimbCount(bit_count);
const a_copy = if (rma.limbs.ptr == a.limbs.ptr) blk: {
const start = buf_index;
const a_len = @min(req_limbs, a.limbs.len);
@memcpy(limbs_buffer[buf_index..][0..a_len], a.limbs[0..a_len]);
buf_index += a_len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else a;
const b_copy = if (rma.limbs.ptr == b.limbs.ptr) blk: {
const start = buf_index;
const b_len = @min(req_limbs, b.limbs.len);
@memcpy(limbs_buffer[buf_index..][0..b_len], b.limbs[0..b_len]);
buf_index += b_len;
break :blk a.toMutable(limbs_buffer[start..buf_index]).toConst();
} else b;
return rma.mulWrapNoAlias(a_copy, b_copy, signedness, bit_count, allocator);
}
/// rma = a * b with 2s-complement wrapping semantics.
///
/// `rma` may not alias with `a` or `b`.
/// `a` and `b` may alias with each other.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `a.limbs.len + b.limbs.len`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn mulWrapNoAlias(
rma: *Mutable,
a: Const,
b: Const,
signedness: Signedness,
bit_count: usize,
allocator: ?Allocator,
) void {
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != b.limbs.ptr); // illegal aliasing
const req_limbs = calcTwosCompLimbCount(bit_count);
// We can ignore the upper bits here, those results will be discarded anyway.
const a_limbs = a.limbs[0..@min(req_limbs, a.limbs.len)];
const b_limbs = b.limbs[0..@min(req_limbs, b.limbs.len)];
@memset(rma.limbs[0..req_limbs], 0);
llmulacc(.add, allocator, rma.limbs, a_limbs, b_limbs);
rma.normalize(@min(req_limbs, a.limbs.len + b.limbs.len));
rma.positive = (a.positive == b.positive);
rma.truncate(rma.toConst(), signedness, bit_count);
}
/// r = @bitReverse(a) with 2s-complement semantics.
/// r and a may be aliases.
///
/// Asserts the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn bitReverse(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
if (bit_count == 0) return;
r.copy(a);
const limbs_required = calcTwosCompLimbCount(bit_count);
if (!a.positive) {
r.positive = true; // Negate.
r.bitNotWrap(r.toConst(), .unsigned, bit_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
} else if (limbs_required > a.limbs.len) {
// Zero-extend to our output length
for (r.limbs[a.limbs.len..limbs_required]) |*limb| {
limb.* = 0;
}
r.len = limbs_required;
}
// 0b0..01..1000 with @log2(@sizeOf(Limb)) consecutive ones
const endian_mask: usize = (@sizeOf(Limb) - 1) << 3;
const bytes = std.mem.sliceAsBytes(r.limbs);
var bits = std.packed_int_array.PackedIntSliceEndian(u1, .little).init(bytes, limbs_required * @bitSizeOf(Limb));
var k: usize = 0;
while (k < ((bit_count + 1) / 2)) : (k += 1) {
var i = k;
var rev_i = bit_count - i - 1;
// This "endian mask" remaps a low (LE) byte to the corresponding high
// (BE) byte in the Limb, without changing which limbs we are indexing
if (native_endian == .big) {
i ^= endian_mask;
rev_i ^= endian_mask;
}
const bit_i = bits.get(i);
const bit_rev_i = bits.get(rev_i);
bits.set(i, bit_rev_i);
bits.set(rev_i, bit_i);
}
// Calculate signed-magnitude representation for output
if (signedness == .signed) {
const last_bit = switch (native_endian) {
.little => bits.get(bit_count - 1),
.big => bits.get((bit_count - 1) ^ endian_mask),
};
if (last_bit == 1) {
r.bitNotWrap(r.toConst(), .unsigned, bit_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
r.positive = false; // Negate.
}
}
r.normalize(r.len);
}
/// r = @byteSwap(a) with 2s-complement semantics.
/// r and a may be aliases.
///
/// Asserts the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(8*byte_count)`.
pub fn byteSwap(r: *Mutable, a: Const, signedness: Signedness, byte_count: usize) void {
if (byte_count == 0) return;
r.copy(a);
const limbs_required = calcTwosCompLimbCount(8 * byte_count);
if (!a.positive) {
r.positive = true; // Negate.
r.bitNotWrap(r.toConst(), .unsigned, 8 * byte_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
} else if (limbs_required > a.limbs.len) {
// Zero-extend to our output length
for (r.limbs[a.limbs.len..limbs_required]) |*limb| {
limb.* = 0;
}
r.len = limbs_required;
}
// 0b0..01..1 with @log2(@sizeOf(Limb)) trailing ones
const endian_mask: usize = @sizeOf(Limb) - 1;
var bytes = std.mem.sliceAsBytes(r.limbs);
assert(bytes.len >= byte_count);
var k: usize = 0;
while (k < (byte_count + 1) / 2) : (k += 1) {
var i = k;
var rev_i = byte_count - k - 1;
// This "endian mask" remaps a low (LE) byte to the corresponding high
// (BE) byte in the Limb, without changing which limbs we are indexing
if (native_endian == .big) {
i ^= endian_mask;
rev_i ^= endian_mask;
}
const byte_i = bytes[i];
const byte_rev_i = bytes[rev_i];
bytes[rev_i] = byte_i;
bytes[i] = byte_rev_i;
}
// Calculate signed-magnitude representation for output
if (signedness == .signed) {
const last_byte = switch (native_endian) {
.little => bytes[byte_count - 1],
.big => bytes[(byte_count - 1) ^ endian_mask],
};
if (last_byte & (1 << 7) != 0) { // Check sign bit of last byte
r.bitNotWrap(r.toConst(), .unsigned, 8 * byte_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
r.positive = false; // Negate.
}
}
r.normalize(r.len);
}
/// r = @popCount(a) with 2s-complement semantics.
/// r and a may be aliases.
///
/// Assets the result fits in `r`. Upper bound on the number of limbs needed by
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn popCount(r: *Mutable, a: Const, bit_count: usize) void {
r.copy(a);
if (!a.positive) {
r.positive = true; // Negate.
r.bitNotWrap(r.toConst(), .unsigned, bit_count); // Bitwise NOT.
r.addScalar(r.toConst(), 1); // Add one.
}
var sum: Limb = 0;
for (r.limbs[0..r.len]) |limb| {
sum += @popCount(limb);
}
r.set(sum);
}
/// rma = a * a
///
/// `rma` may not alias with `a`.
///
/// Asserts the result fits in `rma`. An upper bound on the number of limbs needed by
/// rma is given by `2 * a.limbs.len + 1`.
///
/// If `allocator` is provided, it will be used for temporary storage to improve
/// multiplication performance. `error.OutOfMemory` is handled with a fallback algorithm.
pub fn sqrNoAlias(rma: *Mutable, a: Const, opt_allocator: ?Allocator) void {
_ = opt_allocator;
assert(rma.limbs.ptr != a.limbs.ptr); // illegal aliasing
@memset(rma.limbs, 0);
llsquareBasecase(rma.limbs, a.limbs);
rma.normalize(2 * a.limbs.len + 1);
rma.positive = true;
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is `b.limbs.len`.
/// The upper bound for q limb count is given by `a.limbs`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divFloor(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
) void {
const sep = a.limbs.len + 2;
var x = a.toMutable(limbs_buffer[0..sep]);
var y = b.toMutable(limbs_buffer[sep..]);
div(q, r, &x, &y);
// Note, `div` performs truncating division, which satisfies
// @divTrunc(a, b) * b + @rem(a, b) = a
// so r = a - @divTrunc(a, b) * b
// Note, @rem(a, -b) = @rem(-b, a) = -@rem(a, b) = -@rem(-a, -b)
// For divTrunc, we want to perform
// @divFloor(a, b) * b + @mod(a, b) = a
// Note:
// @divFloor(-a, b)
// = @divFloor(a, -b)
// = -@divCeil(a, b)
// = -@divFloor(a + b - 1, b)
// = -@divTrunc(a + b - 1, b)
// Note (1):
// @divTrunc(a + b - 1, b) * b + @rem(a + b - 1, b) = a + b - 1
// = @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) = a + b - 1
// = @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = a
if (a.positive and b.positive) {
// Positive-positive case, don't need to do anything.
} else if (a.positive and !b.positive) {
// a/-b -> q is negative, and so we need to fix flooring.
// Subtract one to make the division flooring.
// @divFloor(a, -b) * -b + @mod(a, -b) = a
// If b divides a exactly, we have @divFloor(a, -b) * -b = a
// Else, we have @divFloor(a, -b) * -b > a, so @mod(a, -b) becomes negative
// We have:
// @divFloor(a, -b) * -b + @mod(a, -b) = a
// = -@divTrunc(a + b - 1, b) * -b + @mod(a, -b) = a
// = @divTrunc(a + b - 1, b) * b + @mod(a, -b) = a
// Substitute a for (1):
// @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = @divTrunc(a + b - 1, b) * b + @mod(a, -b)
// Yields:
// @mod(a, -b) = @rem(a - 1, b) - b + 1
// Note that `r` holds @rem(a, b) at this point.
//
// If @rem(a, b) is not 0:
// @rem(a - 1, b) = @rem(a, b) - 1
// => @mod(a, -b) = @rem(a, b) - 1 - b + 1 = @rem(a, b) - b
// Else:
// @rem(a - 1, b) = @rem(a + b - 1, b) = @rem(b - 1, b) = b - 1
// => @mod(a, -b) = b - 1 - b + 1 = 0
if (!r.eqlZero()) {
q.addScalar(q.toConst(), -1);
r.positive = true;
r.sub(r.toConst(), y.toConst().abs());
}
} else if (!a.positive and b.positive) {
// -a/b -> q is negative, and so we need to fix flooring.
// Subtract one to make the division flooring.
// @divFloor(-a, b) * b + @mod(-a, b) = a
// If b divides a exactly, we have @divFloor(-a, b) * b = -a
// Else, we have @divFloor(-a, b) * b < -a, so @mod(-a, b) becomes positive
// We have:
// @divFloor(-a, b) * b + @mod(-a, b) = -a
// = -@divTrunc(a + b - 1, b) * b + @mod(-a, b) = -a
// = @divTrunc(a + b - 1, b) * b - @mod(-a, b) = a
// Substitute a for (1):
// @divTrunc(a + b - 1, b) * b + @rem(a - 1, b) - b + 1 = @divTrunc(a + b - 1, b) * b - @mod(-a, b)
// Yields:
// @rem(a - 1, b) - b + 1 = -@mod(-a, b)
// => -@mod(-a, b) = @rem(a - 1, b) - b + 1
// => @mod(-a, b) = -(@rem(a - 1, b) - b + 1) = -@rem(a - 1, b) + b - 1
//
// If @rem(a, b) is not 0:
// @rem(a - 1, b) = @rem(a, b) - 1
// => @mod(-a, b) = -(@rem(a, b) - 1) + b - 1 = -@rem(a, b) + 1 + b - 1 = -@rem(a, b) + b
// Else :
// @rem(a - 1, b) = b - 1
// => @mod(-a, b) = -(b - 1) + b - 1 = 0
if (!r.eqlZero()) {
q.addScalar(q.toConst(), -1);
r.positive = false;
r.add(r.toConst(), y.toConst().abs());
}
} else if (!a.positive and !b.positive) {
// a/b -> q is positive, don't need to do anything to fix flooring.
// @divFloor(-a, -b) * -b + @mod(-a, -b) = -a
// If b divides a exactly, we have @divFloor(-a, -b) * -b = -a
// Else, we have @divFloor(-a, -b) * -b > -a, so @mod(-a, -b) becomes negative
// We have:
// @divFloor(-a, -b) * -b + @mod(-a, -b) = -a
// = @divTrunc(a, b) * -b + @mod(-a, -b) = -a
// = @divTrunc(a, b) * b - @mod(-a, -b) = a
// We also have:
// @divTrunc(a, b) * b + @rem(a, b) = a
// Substitute a:
// @divTrunc(a, b) * b + @rem(a, b) = @divTrunc(a, b) * b - @mod(-a, -b)
// => @rem(a, b) = -@mod(-a, -b)
// => @mod(-a, -b) = -@rem(a, b)
r.positive = false;
}
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
/// q may alias with a or b.
///
/// Asserts there is enough memory to store q and r.
/// The upper bound for r limb count is `b.limbs.len`.
/// The upper bound for q limb count is given by `a.limbs.len`.
///
/// `limbs_buffer` is used for temporary storage. The amount required is given by `calcDivLimbsBufferLen`.
pub fn divTrunc(
q: *Mutable,
r: *Mutable,
a: Const,
b: Const,
limbs_buffer: []Limb,
) void {
const sep = a.limbs.len + 2;
var x = a.toMutable(limbs_buffer[0..sep]);
var y = b.toMutable(limbs_buffer[sep..]);
div(q, r, &x, &y);
}
/// r = a << shift, in other words, r = a * 2^shift
///
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len + (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftLeft(r: *Mutable, a: Const, shift: usize) void {
llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len + (shift / limb_bits) + 1);
r.positive = a.positive;
}
/// r = a <<| shift with 2s-complement saturating semantics.
///
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn shiftLeftSat(r: *Mutable, a: Const, shift: usize, signedness: Signedness, bit_count: usize) void {
// Special case: When the argument is negative, but the result is supposed to be unsigned,
// return 0 in all cases.
if (!a.positive and signedness == .unsigned) {
r.set(0);
return;
}
// Check whether the shift is going to overflow. This is the case
// when (in 2s complement) any bit above `bit_count - shift` is set in the unshifted value.
// Note, the sign bit is not counted here.
// Handle shifts larger than the target type. This also deals with
// 0-bit integers.
if (bit_count <= shift) {
// In this case, there is only no overflow if `a` is zero.
if (a.eqlZero()) {
r.set(0);
} else {
r.setTwosCompIntLimit(if (a.positive) .max else .min, signedness, bit_count);
}
return;
}
const checkbit = bit_count - shift - @intFromBool(signedness == .signed);
// If `checkbit` and more significant bits are zero, no overflow will take place.
if (checkbit >= a.limbs.len * limb_bits) {
// `checkbit` is outside the range of a, so definitely no overflow will take place. We
// can defer to a normal shift.
// Note that if `a` is normalized (which we assume), this checks for set bits in the upper limbs.
// Note, in this case r should already have enough limbs required to perform the normal shift.
// In this case the shift of the most significant limb may still overflow.
r.shiftLeft(a, shift);
return;
} else if (checkbit < (a.limbs.len - 1) * limb_bits) {
// `checkbit` is not in the most significant limb. If `a` is normalized the most significant
// limb will not be zero, so in this case we need to saturate. Note that `a.limbs.len` must be
// at least one according to normalization rules.
r.setTwosCompIntLimit(if (a.positive) .max else .min, signedness, bit_count);
return;
}
// Generate a mask with the bits to check in the most significant limb. We'll need to check
// all bits with equal or more significance than checkbit.
// const msb = @truncate(Log2Limb, checkbit);
// const checkmask = (@as(Limb, 1) << msb) -% 1;
if (a.limbs[a.limbs.len - 1] >> @as(Log2Limb, @truncate(checkbit)) != 0) {
// Need to saturate.
r.setTwosCompIntLimit(if (a.positive) .max else .min, signedness, bit_count);
return;
}
// This shift should not be able to overflow, so invoke llshl and normalize manually
// to avoid the extra required limb.
llshl(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.normalize(a.limbs.len + (shift / limb_bits));
r.positive = a.positive;
}
/// r = a >> shift
/// r and a may alias.
///
/// Asserts there is enough memory to fit the result. The upper bound Limb count is
/// `a.limbs.len - (shift / (@sizeOf(Limb) * 8))`.
pub fn shiftRight(r: *Mutable, a: Const, shift: usize) void {
const full_limbs_shifted_out = shift / limb_bits;
const remaining_bits_shifted_out = shift % limb_bits;
if (a.limbs.len <= full_limbs_shifted_out) {
// Shifting negative numbers converges to -1 instead of 0
if (a.positive) {
r.len = 1;
r.positive = true;
r.limbs[0] = 0;
} else {
r.len = 1;
r.positive = false;
r.limbs[0] = 1;
}
return;
}
const nonzero_negative_shiftout = if (a.positive) false else nonzero: {
for (a.limbs[0..full_limbs_shifted_out]) |x| {
if (x != 0)
break :nonzero true;
}
if (remaining_bits_shifted_out == 0)
break :nonzero false;
const not_covered: Log2Limb = @intCast(limb_bits - remaining_bits_shifted_out);
break :nonzero a.limbs[full_limbs_shifted_out] << not_covered != 0;
};
llshr(r.limbs[0..], a.limbs[0..a.limbs.len], shift);
r.len = a.limbs.len - full_limbs_shifted_out;
if (nonzero_negative_shiftout) {
if (full_limbs_shifted_out > 0) {
r.limbs[a.limbs.len - full_limbs_shifted_out] = 0;
r.len += 1;
}
r.addScalar(r.toConst(), -1);
}
r.normalize(r.len);
r.positive = a.positive;
}
/// r = ~a under 2s complement wrapping semantics.
/// r may alias with a.
///
/// Assets that r has enough limbs to store the result. The upper bound Limb count is
/// r is `calcTwosCompLimbCount(bit_count)`.
pub fn bitNotWrap(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
r.copy(a.negate());
const negative_one = Const{ .limbs = &.{1}, .positive = false };
_ = r.addWrap(r.toConst(), negative_one, signedness, bit_count);
}
/// r = a | b under 2s complement semantics.
/// r may alias with a or b.
///
/// a and b are zero-extended to the longer of a or b.
///
/// Asserts that r has enough limbs to store the result. Upper bound is `@max(a.limbs.len, b.limbs.len)`.
pub fn bitOr(r: *Mutable, a: Const, b: Const) void {
// Trivial cases, llsignedor does not support zero.
if (a.eqlZero()) {
r.copy(b);
return;
} else if (b.eqlZero()) {
r.copy(a);
return;
}
if (a.limbs.len >= b.limbs.len) {
r.positive = llsignedor(r.limbs, a.limbs, a.positive, b.limbs, b.positive);
r.normalize(if (b.positive) a.limbs.len else b.limbs.len);
} else {
r.positive = llsignedor(r.limbs, b.limbs, b.positive, a.limbs, a.positive);
r.normalize(if (a.positive) b.limbs.len else a.limbs.len);
}
}
/// r = a & b under 2s complement semantics.
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result.
/// If only a is positive, the upper bound is `a.limbs.len`.
/// If only b is positive, the upper bound is `b.limbs.len`.
/// If a and b are positive, the upper bound is `@min(a.limbs.len, b.limbs.len)`.
/// If a and b are negative, the upper bound is `@max(a.limbs.len, b.limbs.len) + 1`.
pub fn bitAnd(r: *Mutable, a: Const, b: Const) void {
// Trivial cases, llsignedand does not support zero.
if (a.eqlZero()) {
r.copy(a);
return;
} else if (b.eqlZero()) {
r.copy(b);
return;
}
if (a.limbs.len >= b.limbs.len) {
r.positive = llsignedand(r.limbs, a.limbs, a.positive, b.limbs, b.positive);
r.normalize(if (b.positive) b.limbs.len else if (a.positive) a.limbs.len else a.limbs.len + 1);
} else {
r.positive = llsignedand(r.limbs, b.limbs, b.positive, a.limbs, a.positive);
r.normalize(if (a.positive) a.limbs.len else if (b.positive) b.limbs.len else b.limbs.len + 1);
}
}
/// r = a ^ b under 2s complement semantics.
/// r may alias with a or b.
///
/// Asserts that r has enough limbs to store the result. If a and b share the same signedness, the
/// upper bound is `@max(a.limbs.len, b.limbs.len)`. Otherwise, if either a or b is negative
/// but not both, the upper bound is `@max(a.limbs.len, b.limbs.len) + 1`.
pub fn bitXor(r: *Mutable, a: Const, b: Const) void {
// Trivial cases, because llsignedxor does not support negative zero.
if (a.eqlZero()) {
r.copy(b);
return;
} else if (b.eqlZero()) {
r.copy(a);
return;
}
if (a.limbs.len > b.limbs.len) {
r.positive = llsignedxor(r.limbs, a.limbs, a.positive, b.limbs, b.positive);
r.normalize(a.limbs.len + @intFromBool(a.positive != b.positive));
} else {
r.positive = llsignedxor(r.limbs, b.limbs, b.positive, a.limbs, a.positive);
r.normalize(b.limbs.len + @intFromBool(a.positive != b.positive));
}
}
/// rma may alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is
/// `@min(x.limbs.len, y.limbs.len)`.
///
/// `limbs_buffer` is used for temporary storage during the operation. When this function returns,
/// it will have the same length as it had when the function was called.
pub fn gcd(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
const prev_len = limbs_buffer.items.len;
defer limbs_buffer.shrinkRetainingCapacity(prev_len);
const x_copy = if (rma.limbs.ptr == x.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(x.limbs);
break :blk x.toMutable(limbs_buffer.items[start..]).toConst();
} else x;
const y_copy = if (rma.limbs.ptr == y.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(y.limbs);
break :blk y.toMutable(limbs_buffer.items[start..]).toConst();
} else y;
return gcdLehmer(rma, x_copy, y_copy, limbs_buffer);
}
/// q = a ^ b
///
/// r may not alias a.
///
/// Asserts that `r` has enough limbs to store the result. Upper bound is
/// `calcPowLimbsBufferLen(a.bitCountAbs(), b)`.
///
/// `limbs_buffer` is used for temporary storage.
/// The amount required is given by `calcPowLimbsBufferLen`.
pub fn pow(r: *Mutable, a: Const, b: u32, limbs_buffer: []Limb) void {
assert(r.limbs.ptr != a.limbs.ptr); // illegal aliasing
// Handle all the trivial cases first
switch (b) {
0 => {
// a^0 = 1
return r.set(1);
},
1 => {
// a^1 = a
return r.copy(a);
},
else => {},
}
if (a.eqlZero()) {
// 0^b = 0
return r.set(0);
} else if (a.limbs.len == 1 and a.limbs[0] == 1) {
// 1^b = 1 and -1^b = ±1
r.set(1);
r.positive = a.positive or (b & 1) == 0;
return;
}
// Here a>1 and b>1
const needed_limbs = calcPowLimbsBufferLen(a.bitCountAbs(), b);
assert(r.limbs.len >= needed_limbs);
assert(limbs_buffer.len >= needed_limbs);
llpow(r.limbs, a.limbs, b, limbs_buffer);
r.normalize(needed_limbs);
r.positive = a.positive or (b & 1) == 0;
}
/// r = ⌊√a⌋
///
/// r may alias a.
///
/// Asserts that `r` has enough limbs to store the result. Upper bound is
/// `(a.limbs.len - 1) / 2 + 1`.
///
/// `limbs_buffer` is used for temporary storage.
/// The amount required is given by `calcSqrtLimbsBufferLen`.
pub fn sqrt(
r: *Mutable,
a: Const,
limbs_buffer: []Limb,
) void {
// Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 SqrtInt
// https://members.loria.fr/PZimmermann/mca/pub226.html
var buf_index: usize = 0;
var t = b: {
const start = buf_index;
buf_index += a.limbs.len;
break :b Mutable.init(limbs_buffer[start..buf_index], 0);
};
var u = b: {
const start = buf_index;
const shift = (a.bitCountAbs() + 1) / 2;
buf_index += 1 + ((shift / limb_bits) + 1);
var m = Mutable.init(limbs_buffer[start..buf_index], 1);
m.shiftLeft(m.toConst(), shift); // u must be >= ⌊√a⌋, and should be as small as possible for efficiency
break :b m;
};
var s = b: {
const start = buf_index;
buf_index += u.limbs.len;
break :b u.toConst().toMutable(limbs_buffer[start..buf_index]);
};
var rem = b: {
const start = buf_index;
buf_index += s.limbs.len;
break :b Mutable.init(limbs_buffer[start..buf_index], 0);
};
while (true) {
t.divFloor(&rem, a, s.toConst(), limbs_buffer[buf_index..]);
t.add(t.toConst(), s.toConst());
u.shiftRight(t.toConst(), 1);
if (u.toConst().order(s.toConst()).compare(.gte)) {
r.copy(s.toConst());
return;
}
// Avoid copying u to s by swapping u and s
const tmp_s = s;
s = u;
u = tmp_s;
}
}
/// rma may not alias x or y.
/// x and y may alias each other.
/// Asserts that `rma` has enough limbs to store the result. Upper bound is given by `calcGcdNoAliasLimbLen`.
///
/// `limbs_buffer` is used for temporary storage during the operation.
pub fn gcdNoAlias(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
assert(rma.limbs.ptr != x.limbs.ptr); // illegal aliasing
assert(rma.limbs.ptr != y.limbs.ptr); // illegal aliasing
return gcdLehmer(rma, x, y, limbs_buffer);
}
fn gcdLehmer(result: *Mutable, xa: Const, ya: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
var x = try xa.toManaged(limbs_buffer.allocator);
defer x.deinit();
x.abs();
var y = try ya.toManaged(limbs_buffer.allocator);
defer y.deinit();
y.abs();
if (x.toConst().order(y.toConst()) == .lt) {
x.swap(&y);
}
var t_big = try Managed.init(limbs_buffer.allocator);
defer t_big.deinit();
var r = try Managed.init(limbs_buffer.allocator);
defer r.deinit();
var tmp_x = try Managed.init(limbs_buffer.allocator);
defer tmp_x.deinit();
while (y.len() > 1 and !y.eqlZero()) {
assert(x.isPositive() and y.isPositive());
assert(x.len() >= y.len());
var xh: SignedDoubleLimb = x.limbs[x.len() - 1];
var yh: SignedDoubleLimb = if (x.len() > y.len()) 0 else y.limbs[x.len() - 1];
var A: SignedDoubleLimb = 1;
var B: SignedDoubleLimb = 0;
var C: SignedDoubleLimb = 0;
var D: SignedDoubleLimb = 1;
while (yh + C != 0 and yh + D != 0) {
const q = @divFloor(xh + A, yh + C);
const qp = @divFloor(xh + B, yh + D);
if (q != qp) {
break;
}
var t = A - q * C;
A = C;
C = t;
t = B - q * D;
B = D;
D = t;
t = xh - q * yh;
xh = yh;
yh = t;
}
if (B == 0) {
// t_big = x % y, r is unused
try r.divTrunc(&t_big, &x, &y);
assert(t_big.isPositive());
x.swap(&y);
y.swap(&t_big);
} else {
var storage: [8]Limb = undefined;
const Ap = fixedIntFromSignedDoubleLimb(A, storage[0..2]).toManaged(limbs_buffer.allocator);
const Bp = fixedIntFromSignedDoubleLimb(B, storage[2..4]).toManaged(limbs_buffer.allocator);
const Cp = fixedIntFromSignedDoubleLimb(C, storage[4..6]).toManaged(limbs_buffer.allocator);
const Dp = fixedIntFromSignedDoubleLimb(D, storage[6..8]).toManaged(limbs_buffer.allocator);
// t_big = Ax + By
try r.mul(&x, &Ap);
try t_big.mul(&y, &Bp);
try t_big.add(&r, &t_big);
// u = Cx + Dy, r as u
try tmp_x.copy(x.toConst());
try x.mul(&tmp_x, &Cp);
try r.mul(&y, &Dp);
try r.add(&x, &r);
x.swap(&t_big);
y.swap(&r);
}
}
// euclidean algorithm
assert(x.toConst().order(y.toConst()) != .lt);
while (!y.toConst().eqlZero()) {
try t_big.divTrunc(&r, &x, &y);
x.swap(&y);
y.swap(&r);
}
result.copy(x.toConst());
}
// Truncates by default.
fn div(q: *Mutable, r: *Mutable, x: *Mutable, y: *Mutable) void {
assert(!y.eqlZero()); // division by zero
assert(q != r); // illegal aliasing
const q_positive = (x.positive == y.positive);
const r_positive = x.positive;
if (x.toConst().orderAbs(y.toConst()) == .lt) {
// q may alias x so handle r first.
r.copy(x.toConst());
r.positive = r_positive;
q.set(0);
return;
}
// Handle trailing zero-words of divisor/dividend. These are not handled in the following
// algorithms.
// Note, there must be a non-zero limb for either.
// const x_trailing = std.mem.indexOfScalar(Limb, x.limbs[0..x.len], 0).?;
// const y_trailing = std.mem.indexOfScalar(Limb, y.limbs[0..y.len], 0).?;
const x_trailing = for (x.limbs[0..x.len], 0..) |xi, i| {
if (xi != 0) break i;
} else unreachable;
const y_trailing = for (y.limbs[0..y.len], 0..) |yi, i| {
if (yi != 0) break i;
} else unreachable;
const xy_trailing = @min(x_trailing, y_trailing);
if (y.len - xy_trailing == 1) {
const divisor = y.limbs[y.len - 1];
// Optimization for small divisor. By using a half limb we can avoid requiring DoubleLimb
// divisions in the hot code path. This may often require compiler_rt software-emulation.
if (divisor < maxInt(HalfLimb)) {
lldiv0p5(q.limbs, &r.limbs[0], x.limbs[xy_trailing..x.len], @as(HalfLimb, @intCast(divisor)));
} else {
lldiv1(q.limbs, &r.limbs[0], x.limbs[xy_trailing..x.len], divisor);
}
q.normalize(x.len - xy_trailing);
q.positive = q_positive;
r.len = 1;
r.positive = r_positive;
} else {
// Shrink x, y such that the trailing zero limbs shared between are removed.
var x0 = Mutable{
.limbs = x.limbs[xy_trailing..],
.len = x.len - xy_trailing,
.positive = true,
};
var y0 = Mutable{
.limbs = y.limbs[xy_trailing..],
.len = y.len - xy_trailing,
.positive = true,
};
divmod(q, r, &x0, &y0);
q.positive = q_positive;
r.positive = r_positive;
}
if (xy_trailing != 0 and r.limbs[r.len - 1] != 0) {
// Manually shift here since we know its limb aligned.
mem.copyBackwards(Limb, r.limbs[xy_trailing..], r.limbs[0..r.len]);
@memset(r.limbs[0..xy_trailing], 0);
r.len += xy_trailing;
}
}
/// Handbook of Applied Cryptography, 14.20
///
/// x = qy + r where 0 <= r < y
/// y is modified but returned intact.
fn divmod(
q: *Mutable,
r: *Mutable,
x: *Mutable,
y: *Mutable,
) void {
// 0.
// Normalize so that y[t] > b/2
const lz = @clz(y.limbs[y.len - 1]);
const norm_shift = if (lz == 0 and y.toConst().isOdd())
limb_bits // Force an extra limb so that y is even.
else
lz;
x.shiftLeft(x.toConst(), norm_shift);
y.shiftLeft(y.toConst(), norm_shift);
const n = x.len - 1;
const t = y.len - 1;
const shift = n - t;
// 1.
// for 0 <= j <= n - t, set q[j] to 0
q.len = shift + 1;
q.positive = true;
@memset(q.limbs[0..q.len], 0);
// 2.
// while x >= y * b^(n - t):
// x -= y * b^(n - t)
// q[n - t] += 1
// Note, this algorithm is performed only once if y[t] > base/2 and y is even, which we
// enforced in step 0. This means we can replace the while with an if.
// Note, multiplication by b^(n - t) comes down to shifting to the right by n - t limbs.
// We can also replace x >= y * b^(n - t) by x/b^(n - t) >= y, and use shifts for that.
{
// x >= y * b^(n - t) can be replaced by x/b^(n - t) >= y.
// 'divide' x by b^(n - t)
var tmp = Mutable{
.limbs = x.limbs[shift..],
.len = x.len - shift,
.positive = true,
};
if (tmp.toConst().order(y.toConst()) != .lt) {
// Perform x -= y * b^(n - t)
// Note, we can subtract y from x[n - t..] and get the result without shifting.
// We can also re-use tmp which already contains the relevant part of x. Note that
// this also edits x.
// Due to the check above, this cannot underflow.
tmp.sub(tmp.toConst(), y.toConst());
// tmp.sub normalized tmp, but we need to normalize x now.
x.limbs.len = tmp.limbs.len + shift;
q.limbs[shift] += 1;
}
}
// 3.
// for i from n down to t + 1, do
var i = n;
while (i >= t + 1) : (i -= 1) {
const k = i - t - 1;
// 3.1.
// if x_i == y_t:
// q[i - t - 1] = b - 1
// else:
// q[i - t - 1] = (x[i] * b + x[i - 1]) / y[t]
if (x.limbs[i] == y.limbs[t]) {
q.limbs[k] = maxInt(Limb);
} else {
const q0 = (@as(DoubleLimb, x.limbs[i]) << limb_bits) | @as(DoubleLimb, x.limbs[i - 1]);
const n0 = @as(DoubleLimb, y.limbs[t]);
q.limbs[k] = @as(Limb, @intCast(q0 / n0));
}
// 3.2
// while q[i - t - 1] * (y[t] * b + y[t - 1] > x[i] * b * b + x[i - 1] + x[i - 2]:
// q[i - t - 1] -= 1
// Note, if y[t] > b / 2 this part is repeated no more than twice.
// Extract from y.
const y0 = if (t > 0) y.limbs[t - 1] else 0;
const y1 = y.limbs[t];
// Extract from x.
// Note, big endian.
const tmp0 = [_]Limb{
x.limbs[i],
if (i >= 1) x.limbs[i - 1] else 0,
if (i >= 2) x.limbs[i - 2] else 0,
};
while (true) {
// Ad-hoc 2x1 multiplication with q[i - t - 1].
// Note, big endian.
var tmp1 = [_]Limb{ 0, undefined, undefined };
tmp1[2] = addMulLimbWithCarry(0, y0, q.limbs[k], &tmp1[0]);
tmp1[1] = addMulLimbWithCarry(0, y1, q.limbs[k], &tmp1[0]);
// Big-endian compare
if (mem.order(Limb, &tmp1, &tmp0) != .gt)
break;
q.limbs[k] -= 1;
}
// 3.3.
// x -= q[i - t - 1] * y * b^(i - t - 1)
// Note, we multiply by a single limb here.
// The shift doesn't need to be performed if we add the result of the first multiplication
// to x[i - t - 1].
const underflow = llmulLimb(.sub, x.limbs[k..x.len], y.limbs[0..y.len], q.limbs[k]);
// 3.4.
// if x < 0:
// x += y * b^(i - t - 1)
// q[i - t - 1] -= 1
// Note, we check for x < 0 using the underflow flag from the previous operation.
if (underflow) {
// While we didn't properly set the signedness of x, this operation should 'flow' it back to positive.
llaccum(.add, x.limbs[k..x.len], y.limbs[0..y.len]);
q.limbs[k] -= 1;
}
}
x.normalize(x.len);
q.normalize(q.len);
// De-normalize r and y.
r.shiftRight(x.toConst(), norm_shift);
y.shiftRight(y.toConst(), norm_shift);
}
/// If a is positive, this passes through to truncate.
/// If a is negative, then r is set to positive with the bit pattern ~(a - 1).
/// r may alias a.
///
/// Asserts `r` has enough storage to store the result.
/// The upper bound is `calcTwosCompLimbCount(a.len)`.
pub fn convertToTwosComplement(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
if (a.positive) {
r.truncate(a, signedness, bit_count);
return;
}
const req_limbs = calcTwosCompLimbCount(bit_count);
if (req_limbs == 0 or a.eqlZero()) {
r.set(0);
return;
}
const bit = @as(Log2Limb, @truncate(bit_count - 1));
const signmask = @as(Limb, 1) << bit;
const mask = (signmask << 1) -% 1;
r.addScalar(a.abs(), -1);
if (req_limbs > r.len) {
@memset(r.limbs[r.len..req_limbs], 0);
}
assert(r.limbs.len >= req_limbs);
r.len = req_limbs;
llnot(r.limbs[0..r.len]);
r.limbs[r.len - 1] &= mask;
r.normalize(r.len);
}
/// Truncate an integer to a number of bits, following 2s-complement semantics.
/// r may alias a.
///
/// Asserts `r` has enough storage to store the result.
/// The upper bound is `calcTwosCompLimbCount(a.len)`.
pub fn truncate(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
const req_limbs = calcTwosCompLimbCount(bit_count);
// Handle 0-bit integers.
if (req_limbs == 0 or a.eqlZero()) {
r.set(0);
return;
}
const bit = @as(Log2Limb, @truncate(bit_count - 1));
const signmask = @as(Limb, 1) << bit; // 0b0..010...0 where 1 is the sign bit.
const mask = (signmask << 1) -% 1; // 0b0..01..1 where the leftmost 1 is the sign bit.
if (!a.positive) {
// Convert the integer from sign-magnitude into twos-complement.
// -x = ~(x - 1)
// Note, we simply take req_limbs * @bitSizeOf(Limb) as the
// target bit count.
r.addScalar(a.abs(), -1);
// Zero-extend the result
if (req_limbs > r.len) {
@memset(r.limbs[r.len..req_limbs], 0);
}
// Truncate to required number of limbs.
assert(r.limbs.len >= req_limbs);
r.len = req_limbs;
// Without truncating, we can already peek at the sign bit of the result here.
// Note that it will be 0 if the result is negative, as we did not apply the flip here.
// If the result is negative, we have
// -(-x & mask)
// = ~(~(x - 1) & mask) + 1
// = ~(~((x - 1) | ~mask)) + 1
// = ((x - 1) | ~mask)) + 1
// Note, this is only valid for the target bits and not the upper bits
// of the most significant limb. Those still need to be cleared.
// Also note that `mask` is zero for all other bits, reducing to the identity.
// This means that we still need to use & mask to clear off the upper bits.
if (signedness == .signed and r.limbs[r.len - 1] & signmask == 0) {
// Re-add the one and negate to get the result.
r.limbs[r.len - 1] &= mask;
// Note, addition cannot require extra limbs here as we did a subtraction before.
r.addScalar(r.toConst(), 1);
r.normalize(r.len);
r.positive = false;
} else {
llnot(r.limbs[0..r.len]);
r.limbs[r.len - 1] &= mask;
r.normalize(r.len);
}
} else {
if (a.limbs.len < req_limbs) {
// Integer fits within target bits, no wrapping required.
r.copy(a);
return;
}
r.copy(.{
.positive = a.positive,
.limbs = a.limbs[0..req_limbs],
});
r.limbs[r.len - 1] &= mask;
r.normalize(r.len);
if (signedness == .signed and r.limbs[r.len - 1] & signmask != 0) {
// Convert 2s-complement back to sign-magnitude.
// Sign-extend the upper bits so that they are inverted correctly.
r.limbs[r.len - 1] |= ~mask;
llnot(r.limbs[0..r.len]);
// Note, can only overflow if r holds 0xFFF...F which can only happen if
// a holds 0.
r.addScalar(r.toConst(), 1);
r.positive = false;
}
}
}
/// Saturate an integer to a number of bits, following 2s-complement semantics.
/// r may alias a.
///
/// Asserts `r` has enough storage to store the result.
/// The upper bound is `calcTwosCompLimbCount(a.len)`.
pub fn saturate(r: *Mutable, a: Const, signedness: Signedness, bit_count: usize) void {
if (!a.fitsInTwosComp(signedness, bit_count)) {
r.setTwosCompIntLimit(if (r.positive) .max else .min, signedness, bit_count);
}
}
/// Read the value of `x` from `buffer`.
/// Asserts that `buffer` is large enough to contain a value of bit-size `bit_count`.
///
/// The contents of `buffer` are interpreted as if they were the contents of
/// @ptrCast(*[buffer.len]const u8, &x). Byte ordering is determined by `endian`
/// and any required padding bits are expected on the MSB end.
pub fn readTwosComplement(
x: *Mutable,
buffer: []const u8,
bit_count: usize,
endian: Endian,
signedness: Signedness,
) void {
return readPackedTwosComplement(x, buffer, 0, bit_count, endian, signedness);
}
/// Read the value of `x` from a packed memory `buffer`.
/// Asserts that `buffer` is large enough to contain a value of bit-size `bit_count`
/// at offset `bit_offset`.
///
/// This is equivalent to loading the value of an integer with `bit_count` bits as
/// if it were a field in packed memory at the provided bit offset.
pub fn readPackedTwosComplement(
x: *Mutable,
buffer: []const u8,
bit_offset: usize,
bit_count: usize,
endian: Endian,
signedness: Signedness,
) void {
if (bit_count == 0) {
x.limbs[0] = 0;
x.len = 1;
x.positive = true;
return;
}
// Check whether the input is negative
var positive = true;
if (signedness == .signed) {
const total_bits = bit_offset + bit_count;
const last_byte = switch (endian) {
.little => ((total_bits + 7) / 8) - 1,
.big => buffer.len - ((total_bits + 7) / 8),
};
const sign_bit = @as(u8, 1) << @as(u3, @intCast((total_bits - 1) % 8));
positive = ((buffer[last_byte] & sign_bit) == 0);
}
// Copy all complete limbs
var carry: u1 = 1;
var limb_index: usize = 0;
var bit_index: usize = 0;
while (limb_index < bit_count / @bitSizeOf(Limb)) : (limb_index += 1) {
// Read one Limb of bits
var limb = mem.readPackedInt(Limb, buffer, bit_index + bit_offset, endian);
bit_index += @bitSizeOf(Limb);
// 2's complement (bitwise not, then add carry bit)
if (!positive) {
const ov = @addWithOverflow(~limb, carry);
limb = ov[0];
carry = ov[1];
}
x.limbs[limb_index] = limb;
}
// Copy the remaining bits
if (bit_count != bit_index) {
// Read all remaining bits
var limb = switch (signedness) {
.unsigned => mem.readVarPackedInt(Limb, buffer, bit_index + bit_offset, bit_count - bit_index, endian, .unsigned),
.signed => b: {
const SLimb = std.meta.Int(.signed, @bitSizeOf(Limb));
const limb = mem.readVarPackedInt(SLimb, buffer, bit_index + bit_offset, bit_count - bit_index, endian, .signed);
break :b @as(Limb, @bitCast(limb));
},
};
// 2's complement (bitwise not, then add carry bit)
if (!positive) {
const ov = @addWithOverflow(~limb, carry);
assert(ov[1] == 0);
limb = ov[0];
}
x.limbs[limb_index] = limb;
limb_index += 1;
}
x.positive = positive;
x.len = limb_index;
x.normalize(x.len);
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
pub fn normalize(r: *Mutable, length: usize) void {
r.len = llnormalize(r.limbs[0..length]);
}
};
/// A arbitrary-precision big integer, with a fixed set of immutable limbs.
pub const Const = struct {
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represented as limbs.len == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []const Limb,
positive: bool,
/// The result is an independent resource which is managed by the caller.
pub fn toManaged(self: Const, allocator: Allocator) Allocator.Error!Managed {
const limbs = try allocator.alloc(Limb, @max(Managed.default_capacity, self.limbs.len));
@memcpy(limbs[0..self.limbs.len], self.limbs);
return Managed{
.allocator = allocator,
.limbs = limbs,
.metadata = if (self.positive)
self.limbs.len & ~Managed.sign_bit
else
self.limbs.len | Managed.sign_bit,
};
}
/// Asserts `limbs` is big enough to store the value.
pub fn toMutable(self: Const, limbs: []Limb) Mutable {
@memcpy(limbs[0..self.limbs.len], self.limbs[0..self.limbs.len]);
return .{
.limbs = limbs,
.positive = self.positive,
.len = self.limbs.len,
};
}
pub fn dump(self: Const) void {
for (self.limbs[0..self.limbs.len]) |limb| {
std.debug.print("{x} ", .{limb});
}
std.debug.print("positive={}\n", .{self.positive});
}
pub fn abs(self: Const) Const {
return .{
.limbs = self.limbs,
.positive = true,
};
}
pub fn negate(self: Const) Const {
return .{
.limbs = self.limbs,
.positive = !self.positive,
};
}
pub fn isOdd(self: Const) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Const) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Const) usize {
return (self.limbs.len - 1) * limb_bits + (limb_bits - @clz(self.limbs[self.limbs.len - 1]));
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Const) usize {
var bits = self.bitCountAbs();
// If the entire value has only one bit set (e.g. 0b100000000) then the negation in twos
// complement requires one less bit.
if (!self.positive) block: {
bits += 1;
if (@popCount(self.limbs[self.limbs.len - 1]) == 1) {
for (self.limbs[0 .. self.limbs.len - 1]) |limb| {
if (@popCount(limb) != 0) {
break :block;
}
}
bits -= 1;
}
}
return bits;
}
/// @popCount with two's complement semantics.
///
/// This returns the number of 1 bits set when the value would be represented in
/// two's complement with the given integer width (bit_count).
/// This includes the leading sign bit, which will be set for negative values.
///
/// Asserts that bit_count is enough to represent value in two's compliment
/// and that the final result fits in a usize.
/// Asserts that there are no trailing empty limbs on the most significant end,
/// i.e. that limb count matches `calcLimbLen()` and zero is not negative.
pub fn popCount(self: Const, bit_count: usize) usize {
var sum: usize = 0;
if (self.positive) {
for (self.limbs) |limb| {
sum += @popCount(limb);
}
} else {
assert(self.fitsInTwosComp(.signed, bit_count));
assert(self.limbs[self.limbs.len - 1] != 0);
var remaining_bits = bit_count;
var carry: u1 = 1;
var add_res: Limb = undefined;
// All but the most significant limb.
for (self.limbs[0 .. self.limbs.len - 1]) |limb| {
const ov = @addWithOverflow(~limb, carry);
add_res = ov[0];
carry = ov[1];
sum += @popCount(add_res);
remaining_bits -= limb_bits; // Asserted not to underflow by fitsInTwosComp
}
// The most significant limb may have fewer than @bitSizeOf(Limb) meaningful bits,
// which we can detect with @clz().
// There may also be fewer limbs than needed to fill bit_count.
const limb = self.limbs[self.limbs.len - 1];
const leading_zeroes = @clz(limb);
// The most significant limb is asserted not to be all 0s (above),
// so ~limb cannot be all 1s, and ~limb + 1 cannot overflow.
sum += @popCount(~limb + carry);
sum -= leading_zeroes; // All leading zeroes were flipped and added to sum, so undo those
const remaining_ones = remaining_bits - (limb_bits - leading_zeroes); // All bits not covered by limbs
sum += remaining_ones;
}
return sum;
}
pub fn fitsInTwosComp(self: Const, signedness: Signedness, bit_count: usize) bool {
if (self.eqlZero()) {
return true;
}
if (signedness == .unsigned and !self.positive) {
return false;
}
const req_bits = self.bitCountTwosComp() + @intFromBool(self.positive and signedness == .signed);
return bit_count >= req_bits;
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Const, comptime T: type) bool {
const info = @typeInfo(T).Int;
return self.fitsInTwosComp(info.signedness, info.bits);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
/// TODO See if we can make this exact.
pub fn sizeInBaseUpperBound(self: Const, base: usize) usize {
const bit_count = @as(usize, @intFromBool(!self.positive)) + self.bitCountAbs();
return (bit_count / math.log2(base)) + 2;
}
pub const ConvertError = error{
NegativeIntoUnsigned,
TargetTooSmall,
};
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Const, comptime T: type) ConvertError!T {
switch (@typeInfo(T)) {
.Int => |info| {
// Make sure -0 is handled correctly.
if (self.eqlZero()) return 0;
const UT = std.meta.Int(.unsigned, info.bits);
if (!self.fitsInTwosComp(info.signedness, info.bits)) {
return error.TargetTooSmall;
}
var r: UT = 0;
if (@sizeOf(UT) <= @sizeOf(Limb)) {
r = @as(UT, @intCast(self.limbs[0]));
} else {
for (self.limbs[0..self.limbs.len], 0..) |_, ri| {
const limb = self.limbs[self.limbs.len - ri - 1];
r <<= limb_bits;
r |= limb;
}
}
if (info.signedness == .unsigned) {
return if (self.positive) @as(T, @intCast(r)) else error.NegativeIntoUnsigned;
} else {
if (self.positive) {
return @intCast(r);
} else {
if (math.cast(T, r)) |ok| {
return -ok;
} else {
return minInt(T);
}
}
}
},
else => @compileError("cannot convert Const to type " ++ @typeName(T)),
}
}
/// To allow `std.fmt.format` to work with this type.
/// If the absolute value of integer is greater than or equal to `pow(2, 64 * @sizeOf(usize) * 8)`,
/// this function will fail to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Const,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
_ = options;
comptime var base = 10;
comptime var case: std.fmt.Case = .lower;
if (fmt.len == 0 or comptime mem.eql(u8, fmt, "d")) {
base = 10;
case = .lower;
} else if (comptime mem.eql(u8, fmt, "b")) {
base = 2;
case = .lower;
} else if (comptime mem.eql(u8, fmt, "x")) {
base = 16;
case = .lower;
} else if (comptime mem.eql(u8, fmt, "X")) {
base = 16;
case = .upper;
} else {
std.fmt.invalidFmtError(fmt, self);
}
const available_len = 64;
if (self.limbs.len > available_len)
return out_stream.writeAll("(BigInt)");
var limbs: [calcToStringLimbsBufferLen(available_len, base)]Limb = undefined;
const biggest: Const = .{
.limbs = &([1]Limb{comptime math.maxInt(Limb)} ** available_len),
.positive = false,
};
var buf: [biggest.sizeInBaseUpperBound(base)]u8 = undefined;
const len = self.toString(&buf, base, case, &limbs);
return out_stream.writeAll(buf[0..len]);
}
/// Converts self to a string in the requested base.
/// Caller owns returned memory.
/// Asserts that `base` is in the range [2, 16].
/// See also `toString`, a lower level function than this.
pub fn toStringAlloc(self: Const, allocator: Allocator, base: u8, case: std.fmt.Case) Allocator.Error![]u8 {
assert(base >= 2);
assert(base <= 16);
if (self.eqlZero()) {
return allocator.dupe(u8, "0");
}
const string = try allocator.alloc(u8, self.sizeInBaseUpperBound(base));
errdefer allocator.free(string);
const limbs = try allocator.alloc(Limb, calcToStringLimbsBufferLen(self.limbs.len, base));
defer allocator.free(limbs);
return allocator.realloc(string, self.toString(string, base, case, limbs));
}
/// Converts self to a string in the requested base.
/// Asserts that `base` is in the range [2, 16].
/// `string` is a caller-provided slice of at least `sizeInBaseUpperBound` bytes,
/// where the result is written to.
/// Returns the length of the string.
/// `limbs_buffer` is caller-provided memory for `toString` to use as a working area. It must have
/// length of at least `calcToStringLimbsBufferLen`.
/// In the case of power-of-two base, `limbs_buffer` is ignored.
/// See also `toStringAlloc`, a higher level function than this.
pub fn toString(self: Const, string: []u8, base: u8, case: std.fmt.Case, limbs_buffer: []Limb) usize {
assert(base >= 2);
assert(base <= 16);
if (self.eqlZero()) {
string[0] = '0';
return 1;
}
var digits_len: usize = 0;
// Power of two: can do a single pass and use masks to extract digits.
if (math.isPowerOfTwo(base)) {
const base_shift = math.log2_int(Limb, base);
outer: for (self.limbs[0..self.limbs.len]) |limb| {
var shift: usize = 0;
while (shift < limb_bits) : (shift += base_shift) {
const r = @as(u8, @intCast((limb >> @as(Log2Limb, @intCast(shift))) & @as(Limb, base - 1)));
const ch = std.fmt.digitToChar(r, case);
string[digits_len] = ch;
digits_len += 1;
// If we hit the end, it must be all zeroes from here.
if (digits_len == string.len) break :outer;
}
}
// Always will have a non-zero digit somewhere.
while (string[digits_len - 1] == '0') {
digits_len -= 1;
}
} else {
// Non power-of-two: batch divisions per word size.
// We use a HalfLimb here so the division uses the faster lldiv0p5 over lldiv1 codepath.
const digits_per_limb = math.log(HalfLimb, base, maxInt(HalfLimb));
var limb_base: Limb = 1;
var j: usize = 0;
while (j < digits_per_limb) : (j += 1) {
limb_base *= base;
}
const b: Const = .{ .limbs = &[_]Limb{limb_base}, .positive = true };
var q: Mutable = .{
.limbs = limbs_buffer[0 .. self.limbs.len + 2],
.positive = true, // Make absolute by ignoring self.positive.
.len = self.limbs.len,
};
@memcpy(q.limbs[0..self.limbs.len], self.limbs);
var r: Mutable = .{
.limbs = limbs_buffer[q.limbs.len..][0..self.limbs.len],
.positive = true,
.len = 1,
};
r.limbs[0] = 0;
const rest_of_the_limbs_buf = limbs_buffer[q.limbs.len + r.limbs.len ..];
while (q.len >= 2) {
// Passing an allocator here would not be helpful since this division is destroying
// information, not creating it. [TODO citation needed]
q.divTrunc(&r, q.toConst(), b, rest_of_the_limbs_buf);
var r_word = r.limbs[0];
var i: usize = 0;
while (i < digits_per_limb) : (i += 1) {
const ch = std.fmt.digitToChar(@as(u8, @intCast(r_word % base)), case);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
{
assert(q.len == 1);
var r_word = q.limbs[0];
while (r_word != 0) {
const ch = std.fmt.digitToChar(@as(u8, @intCast(r_word % base)), case);
r_word /= base;
string[digits_len] = ch;
digits_len += 1;
}
}
}
if (!self.positive) {
string[digits_len] = '-';
digits_len += 1;
}
const s = string[0..digits_len];
mem.reverse(u8, s);
return s.len;
}
/// Write the value of `x` into `buffer`
/// Asserts that `buffer` is large enough to store the value.
///
/// `buffer` is filled so that its contents match what would be observed via
/// @ptrCast(*[buffer.len]const u8, &x). Byte ordering is determined by `endian`,
/// and any required padding bits are added on the MSB end.
pub fn writeTwosComplement(x: Const, buffer: []u8, endian: Endian) void {
return writePackedTwosComplement(x, buffer, 0, 8 * buffer.len, endian);
}
/// Write the value of `x` to a packed memory `buffer`.
/// Asserts that `buffer` is large enough to contain a value of bit-size `bit_count`
/// at offset `bit_offset`.
///
/// This is equivalent to storing the value of an integer with `bit_count` bits as
/// if it were a field in packed memory at the provided bit offset.
pub fn writePackedTwosComplement(x: Const, buffer: []u8, bit_offset: usize, bit_count: usize, endian: Endian) void {
assert(x.fitsInTwosComp(if (x.positive) .unsigned else .signed, bit_count));
// Copy all complete limbs
var carry: u1 = 1;
var limb_index: usize = 0;
var bit_index: usize = 0;
while (limb_index < bit_count / @bitSizeOf(Limb)) : (limb_index += 1) {
var limb: Limb = if (limb_index < x.limbs.len) x.limbs[limb_index] else 0;
// 2's complement (bitwise not, then add carry bit)
if (!x.positive) {
const ov = @addWithOverflow(~limb, carry);
limb = ov[0];
carry = ov[1];
}
// Write one Limb of bits
mem.writePackedInt(Limb, buffer, bit_index + bit_offset, limb, endian);
bit_index += @bitSizeOf(Limb);
}
// Copy the remaining bits
if (bit_count != bit_index) {
var limb: Limb = if (limb_index < x.limbs.len) x.limbs[limb_index] else 0;
// 2's complement (bitwise not, then add carry bit)
if (!x.positive) limb = ~limb +% carry;
// Write all remaining bits
mem.writeVarPackedInt(buffer, bit_index + bit_offset, bit_count - bit_index, limb, endian);
}
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if
/// `|a| < |b|`, `|a| == |b|`, or `|a| > |b|` respectively.
pub fn orderAbs(a: Const, b: Const) math.Order {
if (a.limbs.len < b.limbs.len) {
return .lt;
}
if (a.limbs.len > b.limbs.len) {
return .gt;
}
var i: usize = a.limbs.len - 1;
while (i != 0) : (i -= 1) {
if (a.limbs[i] != b.limbs[i]) {
break;
}
}
if (a.limbs[i] < b.limbs[i]) {
return .lt;
} else if (a.limbs[i] > b.limbs[i]) {
return .gt;
} else {
return .eq;
}
}
/// Returns `math.Order.lt`, `math.Order.eq`, `math.Order.gt` if `a < b`, `a == b` or `a > b` respectively.
pub fn order(a: Const, b: Const) math.Order {
if (a.positive != b.positive) {
if (eqlZero(a) and eqlZero(b)) {
return .eq;
} else {
return if (a.positive) .gt else .lt;
}
} else {
const r = orderAbs(a, b);
return if (a.positive) r else switch (r) {
.lt => math.Order.gt,
.eq => math.Order.eq,
.gt => math.Order.lt,
};
}
}
/// Same as `order` but the right-hand operand is a primitive integer.
pub fn orderAgainstScalar(lhs: Const, scalar: anytype) math.Order {
// Normally we could just determine the number of limbs needed with calcLimbLen,
// but that is not comptime-known when scalar is not a comptime_int. Instead, we
// use calcTwosCompLimbCount for a non-comptime_int scalar, which can be pessimistic
// in the case that scalar happens to be small in magnitude within its type, but it
// is well worth being able to use the stack and not needing an allocator passed in.
// Note that Mutable.init still sets len to calcLimbLen(scalar) in any case.
const limb_len = comptime switch (@typeInfo(@TypeOf(scalar))) {
.ComptimeInt => calcLimbLen(scalar),
.Int => |info| calcTwosCompLimbCount(info.bits),
else => @compileError("expected scalar to be an int"),
};
var limbs: [limb_len]Limb = undefined;
const rhs = Mutable.init(&limbs, scalar);
return order(lhs, rhs.toConst());
}
/// Returns true if `a == 0`.
pub fn eqlZero(a: Const) bool {
var d: Limb = 0;
for (a.limbs) |limb| d |= limb;
return d == 0;
}
/// Returns true if `|a| == |b|`.
pub fn eqlAbs(a: Const, b: Const) bool {
return orderAbs(a, b) == .eq;
}
/// Returns true if `a == b`.
pub fn eql(a: Const, b: Const) bool {
return order(a, b) == .eq;
}
pub fn clz(a: Const, bits: Limb) Limb {
// Limbs are stored in little-endian order but we need
// to iterate big-endian.
var total_limb_lz: Limb = 0;
var i: usize = a.limbs.len;
const bits_per_limb = @sizeOf(Limb) * 8;
while (i != 0) {
i -= 1;
const limb = a.limbs[i];
const this_limb_lz = @clz(limb);
total_limb_lz += this_limb_lz;
if (this_limb_lz != bits_per_limb) break;
}
const total_limb_bits = a.limbs.len * bits_per_limb;
return total_limb_lz + bits - total_limb_bits;
}
pub fn ctz(a: Const, bits: Limb) Limb {
// Limbs are stored in little-endian order.
var result: Limb = 0;
for (a.limbs) |limb| {
const limb_tz = @ctz(limb);
result += limb_tz;
if (limb_tz != @sizeOf(Limb) * 8) break;
}
return @min(result, bits);
}
};
/// An arbitrary-precision big integer along with an allocator which manages the memory.
///
/// Memory is allocated as needed to ensure operations never overflow. The range
/// is bounded only by available memory.
pub const Managed = struct {
pub const sign_bit: usize = 1 << (@typeInfo(usize).Int.bits - 1);
/// Default number of limbs to allocate on creation of a `Managed`.
pub const default_capacity = 4;
/// Allocator used by the Managed when requesting memory.
allocator: Allocator,
/// Raw digits. These are:
///
/// * Little-endian ordered
/// * limbs.len >= 1
/// * Zero is represent as Managed.len() == 1 with limbs[0] == 0.
///
/// Accessing limbs directly should be avoided.
limbs: []Limb,
/// High bit is the sign bit. If set, Managed is negative, else Managed is positive.
/// The remaining bits represent the number of limbs used by Managed.
metadata: usize,
/// Creates a new `Managed`. `default_capacity` limbs will be allocated immediately.
/// The integer value after initializing is `0`.
pub fn init(allocator: Allocator) !Managed {
return initCapacity(allocator, default_capacity);
}
pub fn toMutable(self: Managed) Mutable {
return .{
.limbs = self.limbs,
.positive = self.isPositive(),
.len = self.len(),
};
}
pub fn toConst(self: Managed) Const {
return .{
.limbs = self.limbs[0..self.len()],
.positive = self.isPositive(),
};
}
/// Creates a new `Managed` with value `value`.
///
/// This is identical to an `init`, followed by a `set`.
pub fn initSet(allocator: Allocator, value: anytype) !Managed {
var s = try Managed.init(allocator);
errdefer s.deinit();
try s.set(value);
return s;
}
/// Creates a new Managed with a specific capacity. If capacity < default_capacity then the
/// default capacity will be used instead.
/// The integer value after initializing is `0`.
pub fn initCapacity(allocator: Allocator, capacity: usize) !Managed {
return Managed{
.allocator = allocator,
.metadata = 1,
.limbs = block: {
const limbs = try allocator.alloc(Limb, @max(default_capacity, capacity));
limbs[0] = 0;
break :block limbs;
},
};
}
/// Returns the number of limbs currently in use.
pub fn len(self: Managed) usize {
return self.metadata & ~sign_bit;
}
/// Returns whether an Managed is positive.
pub fn isPositive(self: Managed) bool {
return self.metadata & sign_bit == 0;
}
/// Sets the sign of an Managed.
pub fn setSign(self: *Managed, positive: bool) void {
if (positive) {
self.metadata &= ~sign_bit;
} else {
self.metadata |= sign_bit;
}
}
/// Sets the length of an Managed.
///
/// If setLen is used, then the Managed must be normalized to suit.
pub fn setLen(self: *Managed, new_len: usize) void {
self.metadata &= sign_bit;
self.metadata |= new_len;
}
pub fn setMetadata(self: *Managed, positive: bool, length: usize) void {
self.metadata = if (positive) length & ~sign_bit else length | sign_bit;
}
/// Ensures an Managed has enough space allocated for capacity limbs. If the Managed does not have
/// sufficient capacity, the exact amount will be allocated. This occurs even if the requested
/// capacity is only greater than the current capacity by one limb.
pub fn ensureCapacity(self: *Managed, capacity: usize) !void {
if (capacity <= self.limbs.len) {
return;
}
self.limbs = try self.allocator.realloc(self.limbs, capacity);
}
/// Frees all associated memory.
pub fn deinit(self: *Managed) void {
self.allocator.free(self.limbs);
self.* = undefined;
}
/// Returns a `Managed` with the same value. The returned `Managed` is a deep copy and
/// can be modified separately from the original, and its resources are managed
/// separately from the original.
pub fn clone(other: Managed) !Managed {
return other.cloneWithDifferentAllocator(other.allocator);
}
pub fn cloneWithDifferentAllocator(other: Managed, allocator: Allocator) !Managed {
return Managed{
.allocator = allocator,
.metadata = other.metadata,
.limbs = block: {
const limbs = try allocator.alloc(Limb, other.len());
@memcpy(limbs, other.limbs[0..other.len()]);
break :block limbs;
},
};
}
/// Copies the value of the integer to an existing `Managed` so that they both have the same value.
/// Extra memory will be allocated if the receiver does not have enough capacity.
pub fn copy(self: *Managed, other: Const) !void {
if (self.limbs.ptr == other.limbs.ptr) return;
try self.ensureCapacity(other.limbs.len);
@memcpy(self.limbs[0..other.limbs.len], other.limbs[0..other.limbs.len]);
self.setMetadata(other.positive, other.limbs.len);
}
/// Efficiently swap a `Managed` with another. This swaps the limb pointers and a full copy is not
/// performed. The address of the limbs field will not be the same after this function.
pub fn swap(self: *Managed, other: *Managed) void {
mem.swap(Managed, self, other);
}
/// Debugging tool: prints the state to stderr.
pub fn dump(self: Managed) void {
for (self.limbs[0..self.len()]) |limb| {
std.debug.print("{x} ", .{limb});
}
std.debug.print("capacity={} positive={}\n", .{ self.limbs.len, self.isPositive() });
}
/// Negate the sign.
pub fn negate(self: *Managed) void {
self.metadata ^= sign_bit;
}
/// Make positive.
pub fn abs(self: *Managed) void {
self.metadata &= ~sign_bit;
}
pub fn isOdd(self: Managed) bool {
return self.limbs[0] & 1 != 0;
}
pub fn isEven(self: Managed) bool {
return !self.isOdd();
}
/// Returns the number of bits required to represent the absolute value of an integer.
pub fn bitCountAbs(self: Managed) usize {
return self.toConst().bitCountAbs();
}
/// Returns the number of bits required to represent the integer in twos-complement form.
///
/// If the integer is negative the value returned is the number of bits needed by a signed
/// integer to represent the value. If positive the value is the number of bits for an
/// unsigned integer. Any unsigned integer will fit in the signed integer with bitcount
/// one greater than the returned value.
///
/// e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7.
pub fn bitCountTwosComp(self: Managed) usize {
return self.toConst().bitCountTwosComp();
}
pub fn fitsInTwosComp(self: Managed, signedness: Signedness, bit_count: usize) bool {
return self.toConst().fitsInTwosComp(signedness, bit_count);
}
/// Returns whether self can fit into an integer of the requested type.
pub fn fits(self: Managed, comptime T: type) bool {
return self.toConst().fits(T);
}
/// Returns the approximate size of the integer in the given base. Negative values accommodate for
/// the minus sign. This is used for determining the number of characters needed to print the
/// value. It is inexact and may exceed the given value by ~1-2 bytes.
pub fn sizeInBaseUpperBound(self: Managed, base: usize) usize {
return self.toConst().sizeInBaseUpperBound(base);
}
/// Sets an Managed to value. Value must be an primitive integer type.
pub fn set(self: *Managed, value: anytype) Allocator.Error!void {
try self.ensureCapacity(calcLimbLen(value));
var m = self.toMutable();
m.set(value);
self.setMetadata(m.positive, m.len);
}
pub const ConvertError = Const.ConvertError;
/// Convert self to type T.
///
/// Returns an error if self cannot be narrowed into the requested type without truncation.
pub fn to(self: Managed, comptime T: type) ConvertError!T {
return self.toConst().to(T);
}
/// Set self from the string representation `value`.
///
/// `value` must contain only digits <= `base` and is case insensitive. Base prefixes are
/// not allowed (e.g. 0x43 should simply be 43). Underscores in the input string are
/// ignored and can be used as digit separators.
///
/// Returns an error if memory could not be allocated or `value` has invalid digits for the
/// requested base.
///
/// self's allocator is used for temporary storage to boost multiplication performance.
pub fn setString(self: *Managed, base: u8, value: []const u8) !void {
if (base < 2 or base > 16) return error.InvalidBase;
try self.ensureCapacity(calcSetStringLimbCount(base, value.len));
const limbs_buffer = try self.allocator.alloc(Limb, calcSetStringLimbsBufferLen(base, value.len));
defer self.allocator.free(limbs_buffer);
var m = self.toMutable();
try m.setString(base, value, limbs_buffer, self.allocator);
self.setMetadata(m.positive, m.len);
}
/// Set self to either bound of a 2s-complement integer.
/// Note: The result is still sign-magnitude, not twos complement! In order to convert the
/// result to twos complement, it is sufficient to take the absolute value.
pub fn setTwosCompIntLimit(
r: *Managed,
limit: TwosCompIntLimit,
signedness: Signedness,
bit_count: usize,
) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.setTwosCompIntLimit(limit, signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// Converts self to a string in the requested base. Memory is allocated from the provided
/// allocator and not the one present in self.
pub fn toString(self: Managed, allocator: Allocator, base: u8, case: std.fmt.Case) ![]u8 {
if (base < 2 or base > 16) return error.InvalidBase;
return self.toConst().toStringAlloc(allocator, base, case);
}
/// To allow `std.fmt.format` to work with `Managed`.
/// If the absolute value of integer is greater than or equal to `pow(2, 64 * @sizeOf(usize) * 8)`,
/// this function will fail to print the string, printing "(BigInt)" instead of a number.
/// This is because the rendering algorithm requires reversing a string, which requires O(N) memory.
/// See `toString` and `toStringAlloc` for a way to print big integers without failure.
pub fn format(
self: Managed,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
return self.toConst().format(fmt, options, out_stream);
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if |a| < |b|, |a| ==
/// |b| or |a| > |b| respectively.
pub fn orderAbs(a: Managed, b: Managed) math.Order {
return a.toConst().orderAbs(b.toConst());
}
/// Returns math.Order.lt, math.Order.eq, math.Order.gt if a < b, a == b or a
/// > b respectively.
pub fn order(a: Managed, b: Managed) math.Order {
return a.toConst().order(b.toConst());
}
/// Returns true if a == 0.
pub fn eqlZero(a: Managed) bool {
return a.toConst().eqlZero();
}
/// Returns true if |a| == |b|.
pub fn eqlAbs(a: Managed, b: Managed) bool {
return a.toConst().eqlAbs(b.toConst());
}
/// Returns true if a == b.
pub fn eql(a: Managed, b: Managed) bool {
return a.toConst().eql(b.toConst());
}
/// Normalize a possible sequence of leading zeros.
///
/// [1, 2, 3, 4, 0] -> [1, 2, 3, 4]
/// [1, 2, 0, 0, 0] -> [1, 2]
/// [0, 0, 0, 0, 0] -> [0]
pub fn normalize(r: *Managed, length: usize) void {
assert(length > 0);
assert(length <= r.limbs.len);
var j = length;
while (j > 0) : (j -= 1) {
if (r.limbs[j - 1] != 0) {
break;
}
}
// Handle zero
r.setLen(if (j != 0) j else 1);
}
/// r = a + scalar
///
/// r and a may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn addScalar(r: *Managed, a: *const Managed, scalar: anytype) Allocator.Error!void {
try r.ensureAddScalarCapacity(a.toConst(), scalar);
var m = r.toMutable();
m.addScalar(a.toConst(), scalar);
r.setMetadata(m.positive, m.len);
}
/// r = a + b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn add(r: *Managed, a: *const Managed, b: *const Managed) Allocator.Error!void {
try r.ensureAddCapacity(a.toConst(), b.toConst());
var m = r.toMutable();
m.add(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a + b with 2s-complement wrapping semantics. Returns whether any overflow occurred.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn addWrap(
r: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) Allocator.Error!bool {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
const wrapped = m.addWrap(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
return wrapped;
}
/// r = a + b with 2s-complement saturating semantics.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn addSat(r: *Managed, a: *const Managed, b: *const Managed, signedness: Signedness, bit_count: usize) Allocator.Error!void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.addSat(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = a - b
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn sub(r: *Managed, a: *const Managed, b: *const Managed) !void {
try r.ensureCapacity(@max(a.len(), b.len()) + 1);
var m = r.toMutable();
m.sub(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a - b with 2s-complement wrapping semantics. Returns whether any overflow occurred.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn subWrap(
r: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) Allocator.Error!bool {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
const wrapped = m.subWrap(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
return wrapped;
}
/// r = a - b with 2s-complement saturating semantics.
///
/// r, a and b may be aliases.
///
/// Returns an error if memory could not be allocated.
pub fn subSat(
r: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) Allocator.Error!void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.subSat(a.toConst(), b.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// rma = a * b
///
/// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b.
///
/// Returns an error if memory could not be allocated.
///
/// rma's allocator is used for temporary storage to speed up the multiplication.
pub fn mul(rma: *Managed, a: *const Managed, b: *const Managed) !void {
var alias_count: usize = 0;
if (rma.limbs.ptr == a.limbs.ptr)
alias_count += 1;
if (rma.limbs.ptr == b.limbs.ptr)
alias_count += 1;
try rma.ensureMulCapacity(a.toConst(), b.toConst());
var m = rma.toMutable();
if (alias_count == 0) {
m.mulNoAlias(a.toConst(), b.toConst(), rma.allocator);
} else {
const limb_count = calcMulLimbsBufferLen(a.len(), b.len(), alias_count);
const limbs_buffer = try rma.allocator.alloc(Limb, limb_count);
defer rma.allocator.free(limbs_buffer);
m.mul(a.toConst(), b.toConst(), limbs_buffer, rma.allocator);
}
rma.setMetadata(m.positive, m.len);
}
/// rma = a * b with 2s-complement wrapping semantics.
///
/// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b.
///
/// Returns an error if memory could not be allocated.
///
/// rma's allocator is used for temporary storage to speed up the multiplication.
pub fn mulWrap(
rma: *Managed,
a: *const Managed,
b: *const Managed,
signedness: Signedness,
bit_count: usize,
) !void {
var alias_count: usize = 0;
if (rma.limbs.ptr == a.limbs.ptr)
alias_count += 1;
if (rma.limbs.ptr == b.limbs.ptr)
alias_count += 1;
try rma.ensureTwosCompCapacity(bit_count);
var m = rma.toMutable();
if (alias_count == 0) {
m.mulWrapNoAlias(a.toConst(), b.toConst(), signedness, bit_count, rma.allocator);
} else {
const limb_count = calcMulWrapLimbsBufferLen(bit_count, a.len(), b.len(), alias_count);
const limbs_buffer = try rma.allocator.alloc(Limb, limb_count);
defer rma.allocator.free(limbs_buffer);
m.mulWrap(a.toConst(), b.toConst(), signedness, bit_count, limbs_buffer, rma.allocator);
}
rma.setMetadata(m.positive, m.len);
}
pub fn ensureTwosCompCapacity(r: *Managed, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
}
pub fn ensureAddScalarCapacity(r: *Managed, a: Const, scalar: anytype) !void {
try r.ensureCapacity(@max(a.limbs.len, calcLimbLen(scalar)) + 1);
}
pub fn ensureAddCapacity(r: *Managed, a: Const, b: Const) !void {
try r.ensureCapacity(@max(a.limbs.len, b.limbs.len) + 1);
}
pub fn ensureMulCapacity(rma: *Managed, a: Const, b: Const) !void {
try rma.ensureCapacity(a.limbs.len + b.limbs.len + 1);
}
/// q = a / b (rem r)
///
/// a / b are floored (rounded towards 0).
///
/// Returns an error if memory could not be allocated.
pub fn divFloor(q: *Managed, r: *Managed, a: *const Managed, b: *const Managed) !void {
try q.ensureCapacity(a.len());
try r.ensureCapacity(b.len());
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.len(), b.len()));
defer q.allocator.free(limbs_buffer);
mq.divFloor(&mr, a.toConst(), b.toConst(), limbs_buffer);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// q = a / b (rem r)
///
/// a / b are truncated (rounded towards -inf).
///
/// Returns an error if memory could not be allocated.
pub fn divTrunc(q: *Managed, r: *Managed, a: *const Managed, b: *const Managed) !void {
try q.ensureCapacity(a.len());
try r.ensureCapacity(b.len());
var mq = q.toMutable();
var mr = r.toMutable();
const limbs_buffer = try q.allocator.alloc(Limb, calcDivLimbsBufferLen(a.len(), b.len()));
defer q.allocator.free(limbs_buffer);
mq.divTrunc(&mr, a.toConst(), b.toConst(), limbs_buffer);
q.setMetadata(mq.positive, mq.len);
r.setMetadata(mr.positive, mr.len);
}
/// r = a << shift, in other words, r = a * 2^shift
/// r and a may alias.
pub fn shiftLeft(r: *Managed, a: *const Managed, shift: usize) !void {
try r.ensureCapacity(a.len() + (shift / limb_bits) + 1);
var m = r.toMutable();
m.shiftLeft(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = a <<| shift with 2s-complement saturating semantics.
/// r and a may alias.
pub fn shiftLeftSat(r: *Managed, a: *const Managed, shift: usize, signedness: Signedness, bit_count: usize) !void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.shiftLeftSat(a.toConst(), shift, signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = a >> shift
/// r and a may alias.
pub fn shiftRight(r: *Managed, a: *const Managed, shift: usize) !void {
if (a.len() <= shift / limb_bits) {
// Shifting negative numbers converges to -1 instead of 0
if (a.isPositive()) {
r.metadata = 1;
r.limbs[0] = 0;
} else {
r.metadata = 1;
r.setSign(false);
r.limbs[0] = 1;
}
return;
}
try r.ensureCapacity(a.len() - (shift / limb_bits));
var m = r.toMutable();
m.shiftRight(a.toConst(), shift);
r.setMetadata(m.positive, m.len);
}
/// r = ~a under 2s-complement wrapping semantics.
/// r and a may alias.
pub fn bitNotWrap(r: *Managed, a: *const Managed, signedness: Signedness, bit_count: usize) !void {
try r.ensureTwosCompCapacity(bit_count);
var m = r.toMutable();
m.bitNotWrap(a.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = a | b
///
/// a and b are zero-extended to the longer of a or b.
pub fn bitOr(r: *Managed, a: *const Managed, b: *const Managed) !void {
try r.ensureCapacity(@max(a.len(), b.len()));
var m = r.toMutable();
m.bitOr(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a & b
pub fn bitAnd(r: *Managed, a: *const Managed, b: *const Managed) !void {
const cap = if (a.len() >= b.len())
if (b.isPositive()) b.len() else if (a.isPositive()) a.len() else a.len() + 1
else if (a.isPositive()) a.len() else if (b.isPositive()) b.len() else b.len() + 1;
try r.ensureCapacity(cap);
var m = r.toMutable();
m.bitAnd(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// r = a ^ b
pub fn bitXor(r: *Managed, a: *const Managed, b: *const Managed) !void {
const cap = @max(a.len(), b.len()) + @intFromBool(a.isPositive() != b.isPositive());
try r.ensureCapacity(cap);
var m = r.toMutable();
m.bitXor(a.toConst(), b.toConst());
r.setMetadata(m.positive, m.len);
}
/// rma may alias x or y.
/// x and y may alias each other.
///
/// rma's allocator is used for temporary storage to boost multiplication performance.
pub fn gcd(rma: *Managed, x: *const Managed, y: *const Managed) !void {
try rma.ensureCapacity(@min(x.len(), y.len()));
var m = rma.toMutable();
var limbs_buffer = std.ArrayList(Limb).init(rma.allocator);
defer limbs_buffer.deinit();
try m.gcd(x.toConst(), y.toConst(), &limbs_buffer);
rma.setMetadata(m.positive, m.len);
}
/// r = a * a
pub fn sqr(rma: *Managed, a: *const Managed) !void {
const needed_limbs = 2 * a.len() + 1;
if (rma.limbs.ptr == a.limbs.ptr) {
var m = try Managed.initCapacity(rma.allocator, needed_limbs);
errdefer m.deinit();
var m_mut = m.toMutable();
m_mut.sqrNoAlias(a.toConst(), rma.allocator);
m.setMetadata(m_mut.positive, m_mut.len);
rma.deinit();
rma.swap(&m);
} else {
try rma.ensureCapacity(needed_limbs);
var rma_mut = rma.toMutable();
rma_mut.sqrNoAlias(a.toConst(), rma.allocator);
rma.setMetadata(rma_mut.positive, rma_mut.len);
}
}
pub fn pow(rma: *Managed, a: *const Managed, b: u32) !void {
const needed_limbs = calcPowLimbsBufferLen(a.bitCountAbs(), b);
const limbs_buffer = try rma.allocator.alloc(Limb, needed_limbs);
defer rma.allocator.free(limbs_buffer);
if (rma.limbs.ptr == a.limbs.ptr) {
var m = try Managed.initCapacity(rma.allocator, needed_limbs);
errdefer m.deinit();
var m_mut = m.toMutable();
m_mut.pow(a.toConst(), b, limbs_buffer);
m.setMetadata(m_mut.positive, m_mut.len);
rma.deinit();
rma.swap(&m);
} else {
try rma.ensureCapacity(needed_limbs);
var rma_mut = rma.toMutable();
rma_mut.pow(a.toConst(), b, limbs_buffer);
rma.setMetadata(rma_mut.positive, rma_mut.len);
}
}
/// r = ⌊√a⌋
pub fn sqrt(rma: *Managed, a: *const Managed) !void {
const bit_count = a.bitCountAbs();
if (bit_count == 0) {
try rma.set(0);
rma.setMetadata(a.isPositive(), rma.len());
return;
}
if (!a.isPositive()) {
return error.SqrtOfNegativeNumber;
}
const needed_limbs = calcSqrtLimbsBufferLen(bit_count);
const limbs_buffer = try rma.allocator.alloc(Limb, needed_limbs);
defer rma.allocator.free(limbs_buffer);
try rma.ensureCapacity((a.len() - 1) / 2 + 1);
var m = rma.toMutable();
m.sqrt(a.toConst(), limbs_buffer);
rma.setMetadata(m.positive, m.len);
}
/// r = truncate(Int(signedness, bit_count), a)
pub fn truncate(r: *Managed, a: *const Managed, signedness: Signedness, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.truncate(a.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = saturate(Int(signedness, bit_count), a)
pub fn saturate(r: *Managed, a: *const Managed, signedness: Signedness, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.saturate(a.toConst(), signedness, bit_count);
r.setMetadata(m.positive, m.len);
}
/// r = @popCount(a) with 2s-complement semantics.
/// r and a may be aliases.
pub fn popCount(r: *Managed, a: *const Managed, bit_count: usize) !void {
try r.ensureCapacity(calcTwosCompLimbCount(bit_count));
var m = r.toMutable();
m.popCount(a.toConst(), bit_count);
r.setMetadata(m.positive, m.len);
}
};
/// Different operators which can be used in accumulation style functions
/// (llmulacc, llmulaccKaratsuba, llmulaccLong, llmulLimb). In all these functions,
/// a computed value is accumulated with an existing result.
const AccOp = enum {
/// The computed value is added to the result.
add,
/// The computed value is subtracted from the result.
sub,
};
/// Knuth 4.3.1, Algorithm M.
///
/// r = r (op) a * b
/// r MUST NOT alias any of a or b.
///
/// The result is computed modulo `r.len`. When `r.len >= a.len + b.len`, no overflow occurs.
fn llmulacc(comptime op: AccOp, opt_allocator: ?Allocator, r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(r.len >= b.len);
// Order greatest first.
var x = a;
var y = b;
if (a.len < b.len) {
x = b;
y = a;
}
k_mul: {
if (y.len > 48) {
if (opt_allocator) |allocator| {
llmulaccKaratsuba(op, allocator, r, x, y) catch |err| switch (err) {
error.OutOfMemory => break :k_mul, // handled below
};
return;
}
}
}
llmulaccLong(op, r, x, y);
}
/// Knuth 4.3.1, Algorithm M.
///
/// r = r (op) a * b
/// r MUST NOT alias any of a or b.
///
/// The result is computed modulo `r.len`. When `r.len >= a.len + b.len`, no overflow occurs.
fn llmulaccKaratsuba(
comptime op: AccOp,
allocator: Allocator,
r: []Limb,
a: []const Limb,
b: []const Limb,
) error{OutOfMemory}!void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(a.len >= b.len);
// Classical karatsuba algorithm:
// a = a1 * B + a0
// b = b1 * B + b0
// Where a0, b0 < B
//
// We then have:
// ab = a * b
// = (a1 * B + a0) * (b1 * B + b0)
// = a1 * b1 * B * B + a1 * B * b0 + a0 * b1 * B + a0 * b0
// = a1 * b1 * B * B + (a1 * b0 + a0 * b1) * B + a0 * b0
//
// Note that:
// a1 * b0 + a0 * b1
// = (a1 + a0)(b1 + b0) - a1 * b1 - a0 * b0
// = (a0 - a1)(b1 - b0) + a1 * b1 + a0 * b0
//
// This yields:
// ab = p2 * B^2 + (p0 + p1 + p2) * B + p0
//
// Where:
// p0 = a0 * b0
// p1 = (a0 - a1)(b1 - b0)
// p2 = a1 * b1
//
// Note, (a0 - a1) and (b1 - b0) produce values -B < x < B, and so we need to mind the sign here.
// We also have:
// 0 <= p0 <= 2B
// -2B <= p1 <= 2B
//
// Note, when B is a multiple of the limb size, multiplies by B amount to shifts or
// slices of a limbs array.
//
// This function computes the result of the multiplication modulo r.len. This means:
// - p2 and p1 only need to be computed modulo r.len - B.
// - In the case of p2, p2 * B^2 needs to be added modulo r.len - 2 * B.
const split = b.len / 2; // B
const limbs_after_split = r.len - split; // Limbs to compute for p1 and p2.
const limbs_after_split2 = r.len - split * 2; // Limbs to add for p2 * B^2.
// For a0 and b0 we need the full range.
const a0 = a[0..llnormalize(a[0..split])];
const b0 = b[0..llnormalize(b[0..split])];
// For a1 and b1 we only need `limbs_after_split` limbs.
const a1 = blk: {
var a1 = a[split..];
a1.len = @min(llnormalize(a1), limbs_after_split);
break :blk a1;
};
const b1 = blk: {
var b1 = b[split..];
b1.len = @min(llnormalize(b1), limbs_after_split);
break :blk b1;
};
// Note that the above slices relative to `split` work because we have a.len > b.len.
// We need some temporary memory to store intermediate results.
// Note, we can reduce the amount of temporaries we need by reordering the computation here:
// ab = p2 * B^2 + (p0 + p1 + p2) * B + p0
// = p2 * B^2 + (p0 * B + p1 * B + p2 * B) + p0
// = (p2 * B^2 + p2 * B) + (p0 * B + p0) + p1 * B
// Allocate at least enough memory to be able to multiply the upper two segments of a and b, assuming
// no overflow.
const tmp = try allocator.alloc(Limb, a.len - split + b.len - split);
defer allocator.free(tmp);
// Compute p2.
// Note, we don't need to compute all of p2, just enough limbs to satisfy r.
const p2_limbs = @min(limbs_after_split, a1.len + b1.len);
@memset(tmp[0..p2_limbs], 0);
llmulacc(.add, allocator, tmp[0..p2_limbs], a1[0..@min(a1.len, p2_limbs)], b1[0..@min(b1.len, p2_limbs)]);
const p2 = tmp[0..llnormalize(tmp[0..p2_limbs])];
// Add p2 * B to the result.
llaccum(op, r[split..], p2);
// Add p2 * B^2 to the result if required.
if (limbs_after_split2 > 0) {
llaccum(op, r[split * 2 ..], p2[0..@min(p2.len, limbs_after_split2)]);
}
// Compute p0.
// Since a0.len, b0.len <= split and r.len >= split * 2, the full width of p0 needs to be computed.
const p0_limbs = a0.len + b0.len;
@memset(tmp[0..p0_limbs], 0);
llmulacc(.add, allocator, tmp[0..p0_limbs], a0, b0);
const p0 = tmp[0..llnormalize(tmp[0..p0_limbs])];
// Add p0 to the result.
llaccum(op, r, p0);
// Add p0 * B to the result. In this case, we may not need all of it.
llaccum(op, r[split..], p0[0..@min(limbs_after_split, p0.len)]);
// Finally, compute and add p1.
// From now on we only need `limbs_after_split` limbs for a0 and b0, since the result of the
// following computation will be added * B.
const a0x = a0[0..@min(a0.len, limbs_after_split)];
const b0x = b0[0..@min(b0.len, limbs_after_split)];
const j0_sign = llcmp(a0x, a1);
const j1_sign = llcmp(b1, b0x);
if (j0_sign * j1_sign == 0) {
// p1 is zero, we don't need to do any computation at all.
return;
}
@memset(tmp, 0);
// p1 is nonzero, so compute the intermediary terms j0 = a0 - a1 and j1 = b1 - b0.
// Note that in this case, we again need some storage for intermediary results
// j0 and j1. Since we have tmp.len >= 2B, we can store both
// intermediaries in the already allocated array.
const j0 = tmp[0 .. a.len - split];
const j1 = tmp[a.len - split ..];
// Ensure that no subtraction overflows.
if (j0_sign == 1) {
// a0 > a1.
_ = llsubcarry(j0, a0x, a1);
} else {
// a0 < a1.
_ = llsubcarry(j0, a1, a0x);
}
if (j1_sign == 1) {
// b1 > b0.
_ = llsubcarry(j1, b1, b0x);
} else {
// b1 > b0.
_ = llsubcarry(j1, b0x, b1);
}
if (j0_sign * j1_sign == 1) {
// If j0 and j1 are both positive, we now have:
// p1 = j0 * j1
// If j0 and j1 are both negative, we now have:
// p1 = -j0 * -j1 = j0 * j1
// In this case we can add p1 to the result using llmulacc.
llmulacc(op, allocator, r[split..], j0[0..llnormalize(j0)], j1[0..llnormalize(j1)]);
} else {
// In this case either j0 or j1 is negative, an we have:
// p1 = -(j0 * j1)
// Now we need to subtract instead of accumulate.
const inverted_op = if (op == .add) .sub else .add;
llmulacc(inverted_op, allocator, r[split..], j0[0..llnormalize(j0)], j1[0..llnormalize(j1)]);
}
}
/// r = r (op) a.
/// The result is computed modulo `r.len`.
fn llaccum(comptime op: AccOp, r: []Limb, a: []const Limb) void {
@setRuntimeSafety(debug_safety);
if (op == .sub) {
_ = llsubcarry(r, r, a);
return;
}
assert(r.len != 0 and a.len != 0);
assert(r.len >= a.len);
var i: usize = 0;
var carry: Limb = 0;
while (i < a.len) : (i += 1) {
const ov1 = @addWithOverflow(r[i], a[i]);
r[i] = ov1[0];
const ov2 = @addWithOverflow(r[i], carry);
r[i] = ov2[0];
carry = @as(Limb, ov1[1]) + ov2[1];
}
while ((carry != 0) and i < r.len) : (i += 1) {
const ov = @addWithOverflow(r[i], carry);
r[i] = ov[0];
carry = ov[1];
}
}
/// Returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively for limbs.
pub fn llcmp(a: []const Limb, b: []const Limb) i8 {
@setRuntimeSafety(debug_safety);
const a_len = llnormalize(a);
const b_len = llnormalize(b);
if (a_len < b_len) {
return -1;
}
if (a_len > b_len) {
return 1;
}
var i: usize = a_len - 1;
while (i != 0) : (i -= 1) {
if (a[i] != b[i]) {
break;
}
}
if (a[i] < b[i]) {
return -1;
} else if (a[i] > b[i]) {
return 1;
} else {
return 0;
}
}
/// r = r (op) y * xi
/// The result is computed modulo `r.len`. When `r.len >= a.len + b.len`, no overflow occurs.
fn llmulaccLong(comptime op: AccOp, r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(a.len >= b.len);
var i: usize = 0;
while (i < b.len) : (i += 1) {
_ = llmulLimb(op, r[i..], a, b[i]);
}
}
/// r = r (op) y * xi
/// The result is computed modulo `r.len`.
/// Returns whether the operation overflowed.
fn llmulLimb(comptime op: AccOp, acc: []Limb, y: []const Limb, xi: Limb) bool {
@setRuntimeSafety(debug_safety);
if (xi == 0) {
return false;
}
const split = @min(y.len, acc.len);
var a_lo = acc[0..split];
var a_hi = acc[split..];
switch (op) {
.add => {
var carry: Limb = 0;
var j: usize = 0;
while (j < a_lo.len) : (j += 1) {
a_lo[j] = addMulLimbWithCarry(a_lo[j], y[j], xi, &carry);
}
j = 0;
while ((carry != 0) and (j < a_hi.len)) : (j += 1) {
const ov = @addWithOverflow(a_hi[j], carry);
a_hi[j] = ov[0];
carry = ov[1];
}
return carry != 0;
},
.sub => {
var borrow: Limb = 0;
var j: usize = 0;
while (j < a_lo.len) : (j += 1) {
a_lo[j] = subMulLimbWithBorrow(a_lo[j], y[j], xi, &borrow);
}
j = 0;
while ((borrow != 0) and (j < a_hi.len)) : (j += 1) {
const ov = @subWithOverflow(a_hi[j], borrow);
a_hi[j] = ov[0];
borrow = ov[1];
}
return borrow != 0;
},
}
}
/// returns the min length the limb could be.
fn llnormalize(a: []const Limb) usize {
@setRuntimeSafety(debug_safety);
var j = a.len;
while (j > 0) : (j -= 1) {
if (a[j - 1] != 0) {
break;
}
}
// Handle zero
return if (j != 0) j else 1;
}
/// Knuth 4.3.1, Algorithm S.
fn llsubcarry(r: []Limb, a: []const Limb, b: []const Limb) Limb {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= a.len);
var i: usize = 0;
var borrow: Limb = 0;
while (i < b.len) : (i += 1) {
const ov1 = @subWithOverflow(a[i], b[i]);
r[i] = ov1[0];
const ov2 = @subWithOverflow(r[i], borrow);
r[i] = ov2[0];
borrow = @as(Limb, ov1[1]) + ov2[1];
}
while (i < a.len) : (i += 1) {
const ov = @subWithOverflow(a[i], borrow);
r[i] = ov[0];
borrow = ov[1];
}
return borrow;
}
fn llsub(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(a.len > b.len or (a.len == b.len and a[a.len - 1] >= b[b.len - 1]));
assert(llsubcarry(r, a, b) == 0);
}
/// Knuth 4.3.1, Algorithm A.
fn lladdcarry(r: []Limb, a: []const Limb, b: []const Limb) Limb {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= a.len);
var i: usize = 0;
var carry: Limb = 0;
while (i < b.len) : (i += 1) {
const ov1 = @addWithOverflow(a[i], b[i]);
r[i] = ov1[0];
const ov2 = @addWithOverflow(r[i], carry);
r[i] = ov2[0];
carry = @as(Limb, ov1[1]) + ov2[1];
}
while (i < a.len) : (i += 1) {
const ov = @addWithOverflow(a[i], carry);
r[i] = ov[0];
carry = ov[1];
}
return carry;
}
fn lladd(r: []Limb, a: []const Limb, b: []const Limb) void {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len + 1);
r[a.len] = lladdcarry(r, a, b);
}
/// Knuth 4.3.1, Exercise 16.
fn lldiv1(quo: []Limb, rem: *Limb, a: []const Limb, b: Limb) void {
@setRuntimeSafety(debug_safety);
assert(a.len > 1 or a[0] >= b);
assert(quo.len >= a.len);
rem.* = 0;
for (a, 0..) |_, ri| {
const i = a.len - ri - 1;
const pdiv = ((@as(DoubleLimb, rem.*) << limb_bits) | a[i]);
if (pdiv == 0) {
quo[i] = 0;
rem.* = 0;
} else if (pdiv < b) {
quo[i] = 0;
rem.* = @as(Limb, @truncate(pdiv));
} else if (pdiv == b) {
quo[i] = 1;
rem.* = 0;
} else {
quo[i] = @as(Limb, @truncate(@divTrunc(pdiv, b)));
rem.* = @as(Limb, @truncate(pdiv - (quo[i] *% b)));
}
}
}
fn lldiv0p5(quo: []Limb, rem: *Limb, a: []const Limb, b: HalfLimb) void {
@setRuntimeSafety(debug_safety);
assert(a.len > 1 or a[0] >= b);
assert(quo.len >= a.len);
rem.* = 0;
for (a, 0..) |_, ri| {
const i = a.len - ri - 1;
const ai_high = a[i] >> half_limb_bits;
const ai_low = a[i] & ((1 << half_limb_bits) - 1);
// Split the division into two divisions acting on half a limb each. Carry remainder.
const ai_high_with_carry = (rem.* << half_limb_bits) | ai_high;
const ai_high_quo = ai_high_with_carry / b;
rem.* = ai_high_with_carry % b;
const ai_low_with_carry = (rem.* << half_limb_bits) | ai_low;
const ai_low_quo = ai_low_with_carry / b;
rem.* = ai_low_with_carry % b;
quo[i] = (ai_high_quo << half_limb_bits) | ai_low_quo;
}
}
fn llshl(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety);
assert(a.len >= 1);
const interior_limb_shift = @as(Log2Limb, @truncate(shift));
// We only need the extra limb if the shift of the last element overflows.
// This is useful for the implementation of `shiftLeftSat`.
if (a[a.len - 1] << interior_limb_shift >> interior_limb_shift != a[a.len - 1]) {
assert(r.len >= a.len + (shift / limb_bits) + 1);
} else {
assert(r.len >= a.len + (shift / limb_bits));
}
const limb_shift = shift / limb_bits + 1;
var carry: Limb = 0;
var i: usize = 0;
while (i < a.len) : (i += 1) {
const src_i = a.len - i - 1;
const dst_i = src_i + limb_shift;
const src_digit = a[src_i];
r[dst_i] = carry | @call(.always_inline, math.shr, .{
Limb,
src_digit,
limb_bits - @as(Limb, @intCast(interior_limb_shift)),
});
carry = (src_digit << interior_limb_shift);
}
r[limb_shift - 1] = carry;
@memset(r[0 .. limb_shift - 1], 0);
}
fn llshr(r: []Limb, a: []const Limb, shift: usize) void {
@setRuntimeSafety(debug_safety);
assert(a.len >= 1);
assert(r.len >= a.len - (shift / limb_bits));
const limb_shift = shift / limb_bits;
const interior_limb_shift = @as(Log2Limb, @truncate(shift));
var i: usize = 0;
while (i < a.len - limb_shift) : (i += 1) {
const dst_i = i;
const src_i = dst_i + limb_shift;
const src_digit = a[src_i];
const src_digit_next = if (src_i + 1 < a.len) a[src_i + 1] else 0;
const carry = @call(.always_inline, math.shl, .{
Limb,
src_digit_next,
limb_bits - @as(Limb, @intCast(interior_limb_shift)),
});
r[dst_i] = carry | (src_digit >> interior_limb_shift);
}
}
// r = ~r
fn llnot(r: []Limb) void {
@setRuntimeSafety(debug_safety);
for (r) |*elem| {
elem.* = ~elem.*;
}
}
// r = a | b with 2s complement semantics.
// r may alias.
// a and b must not be 0.
// Returns `true` when the result is positive.
// When b is positive, r requires at least `a.len` limbs of storage.
// When b is negative, r requires at least `b.len` limbs of storage.
fn llsignedor(r: []Limb, a: []const Limb, a_positive: bool, b: []const Limb, b_positive: bool) bool {
@setRuntimeSafety(debug_safety);
assert(r.len >= a.len);
assert(a.len >= b.len);
if (a_positive and b_positive) {
// Trivial case, result is positive.
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] | b[i];
}
while (i < a.len) : (i += 1) {
r[i] = a[i];
}
return true;
} else if (!a_positive and b_positive) {
// Result is negative.
// r = (--a) | b
// = ~(-a - 1) | b
// = ~(-a - 1) | ~~b
// = ~((-a - 1) & ~b)
// = -(((-a - 1) & ~b) + 1)
var i: usize = 0;
var a_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
const ov1 = @subWithOverflow(a[i], a_borrow);
a_borrow = ov1[1];
const ov2 = @addWithOverflow(ov1[0] & ~b[i], r_carry);
r[i] = ov2[0];
r_carry = ov2[1];
}
// In order for r_carry to be nonzero at this point, ~b[i] would need to be
// all ones, which would require b[i] to be zero. This cannot be when
// b is normalized, so there cannot be a carry here.
// Also, x & ~b can only clear bits, so (x & ~b) <= x, meaning (-a - 1) + 1 never overflows.
assert(r_carry == 0);
// With b = 0, we get (-a - 1) & ~0 = -a - 1.
// Note, if a_borrow is zero we do not need to compute anything for
// the higher limbs so we can early return here.
while (i < a.len and a_borrow == 1) : (i += 1) {
const ov = @subWithOverflow(a[i], a_borrow);
r[i] = ov[0];
a_borrow = ov[1];
}
assert(a_borrow == 0); // a was 0.
return false;
} else if (a_positive and !b_positive) {
// Result is negative.
// r = a | (--b)
// = a | ~(-b - 1)
// = ~~a | ~(-b - 1)
// = ~(~a & (-b - 1))
// = -((~a & (-b - 1)) + 1)
var i: usize = 0;
var b_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
const ov1 = @subWithOverflow(b[i], b_borrow);
b_borrow = ov1[1];
const ov2 = @addWithOverflow(~a[i] & ov1[0], r_carry);
r[i] = ov2[0];
r_carry = ov2[1];
}
// b is at least 1, so this should never underflow.
assert(b_borrow == 0); // b was 0
// x & ~a can only clear bits, so (x & ~a) <= x, meaning (-b - 1) + 1 never overflows.
assert(r_carry == 0);
// With b = 0 and b_borrow = 0, we get ~a & (0 - 0) = ~a & 0 = 0.
// Omit setting the upper bytes, just deal with those when calling llsignedor.
return false;
} else {
// Result is negative.
// r = (--a) | (--b)
// = ~(-a - 1) | ~(-b - 1)
// = ~((-a - 1) & (-b - 1))
// = -(~(~((-a - 1) & (-b - 1))) + 1)
// = -((-a - 1) & (-b - 1) + 1)
var i: usize = 0;
var a_borrow: u1 = 1;
var b_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
const ov1 = @subWithOverflow(a[i], a_borrow);
a_borrow = ov1[1];
const ov2 = @subWithOverflow(b[i], b_borrow);
b_borrow = ov2[1];
const ov3 = @addWithOverflow(ov1[0] & ov2[0], r_carry);
r[i] = ov3[0];
r_carry = ov3[1];
}
// b is at least 1, so this should never underflow.
assert(b_borrow == 0); // b was 0
// Can never overflow because in order for b_limb to be maxInt(Limb),
// b_borrow would need to equal 1.
// x & y can only clear bits, meaning x & y <= x and x & y <= y. This implies that
// for x = a - 1 and y = b - 1, the +1 term would never cause an overflow.
assert(r_carry == 0);
// With b = 0 and b_borrow = 0 we get (-a - 1) & (0 - 0) = (-a - 1) & 0 = 0.
// Omit setting the upper bytes, just deal with those when calling llsignedor.
return false;
}
}
// r = a & b with 2s complement semantics.
// r may alias.
// a and b must not be 0.
// Returns `true` when the result is positive.
// We assume `a.len >= b.len` here, so:
// 1. when b is positive, r requires at least `b.len` limbs of storage,
// 2. when b is negative but a is positive, r requires at least `a.len` limbs of storage,
// 3. when both a and b are negative, r requires at least `a.len + 1` limbs of storage.
fn llsignedand(r: []Limb, a: []const Limb, a_positive: bool, b: []const Limb, b_positive: bool) bool {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(a.len >= b.len);
assert(r.len >= if (b_positive) b.len else if (a_positive) a.len else a.len + 1);
if (a_positive and b_positive) {
// Trivial case, result is positive.
var i: usize = 0;
while (i < b.len) : (i += 1) {
r[i] = a[i] & b[i];
}
// With b = 0 we have a & 0 = 0, so the upper bytes are zero.
// Omit setting them here and simply discard them whenever
// llsignedand is called.
return true;
} else if (!a_positive and b_positive) {
// Result is positive.
// r = (--a) & b
// = ~(-a - 1) & b
var i: usize = 0;
var a_borrow: u1 = 1;
while (i < b.len) : (i += 1) {
const ov = @subWithOverflow(a[i], a_borrow);
a_borrow = ov[1];
r[i] = ~ov[0] & b[i];
}
// With b = 0 we have ~(a - 1) & 0 = 0, so the upper bytes are zero.
// Omit setting them here and simply discard them whenever
// llsignedand is called.
return true;
} else if (a_positive and !b_positive) {
// Result is positive.
// r = a & (--b)
// = a & ~(-b - 1)
var i: usize = 0;
var b_borrow: u1 = 1;
while (i < b.len) : (i += 1) {
const ov = @subWithOverflow(b[i], b_borrow);
b_borrow = ov[1];
r[i] = a[i] & ~ov[0];
}
assert(b_borrow == 0); // b was 0
// With b = 0 and b_borrow = 0 we have a & ~(0 - 0) = a & ~0 = a, so
// the upper bytes are the same as those of a.
while (i < a.len) : (i += 1) {
r[i] = a[i];
}
return true;
} else {
// Result is negative.
// r = (--a) & (--b)
// = ~(-a - 1) & ~(-b - 1)
// = ~((-a - 1) | (-b - 1))
// = -(((-a - 1) | (-b - 1)) + 1)
var i: usize = 0;
var a_borrow: u1 = 1;
var b_borrow: u1 = 1;
var r_carry: u1 = 1;
while (i < b.len) : (i += 1) {
const ov1 = @subWithOverflow(a[i], a_borrow);
a_borrow = ov1[1];
const ov2 = @subWithOverflow(b[i], b_borrow);
b_borrow = ov2[1];
const ov3 = @addWithOverflow(ov1[0] | ov2[0], r_carry);
r[i] = ov3[0];
r_carry = ov3[1];
}
// b is at least 1, so this should never underflow.
assert(b_borrow == 0); // b was 0
// With b = 0 and b_borrow = 0 we get (-a - 1) | (0 - 0) = (-a - 1) | 0 = -a - 1.
while (i < a.len) : (i += 1) {
const ov1 = @subWithOverflow(a[i], a_borrow);
a_borrow = ov1[1];
const ov2 = @addWithOverflow(ov1[0], r_carry);
r[i] = ov2[0];
r_carry = ov2[1];
}
assert(a_borrow == 0); // a was 0.
// The final addition can overflow here, so we need to keep that in mind.
r[i] = r_carry;
return false;
}
}
// r = a ^ b with 2s complement semantics.
// r may alias.
// a and b must not be -0.
// Returns `true` when the result is positive.
// If the sign of a and b is equal, then r requires at least `@max(a.len, b.len)` limbs are required.
// Otherwise, r requires at least `@max(a.len, b.len) + 1` limbs.
fn llsignedxor(r: []Limb, a: []const Limb, a_positive: bool, b: []const Limb, b_positive: bool) bool {
@setRuntimeSafety(debug_safety);
assert(a.len != 0 and b.len != 0);
assert(r.len >= a.len);
assert(a.len >= b.len);
// If a and b are positive, the result is positive and r = a ^ b.
// If a negative, b positive, result is negative and we have
// r = --(--a ^ b)
// = --(~(-a - 1) ^ b)
// = -(~(~(-a - 1) ^ b) + 1)
// = -(((-a - 1) ^ b) + 1)
// Same if a is positive and b is negative, sides switched.
// If both a and b are negative, the result is positive and we have
// r = (--a) ^ (--b)
// = ~(-a - 1) ^ ~(-b - 1)
// = (-a - 1) ^ (-b - 1)
// These operations can be made more generic as follows:
// - If a is negative, subtract 1 from |a| before the xor.
// - If b is negative, subtract 1 from |b| before the xor.
// - if the result is supposed to be negative, add 1.
var i: usize = 0;
var a_borrow = @intFromBool(!a_positive);
var b_borrow = @intFromBool(!b_positive);
var r_carry = @intFromBool(a_positive != b_positive);
while (i < b.len) : (i += 1) {
const ov1 = @subWithOverflow(a[i], a_borrow);
a_borrow = ov1[1];
const ov2 = @subWithOverflow(b[i], b_borrow);
b_borrow = ov2[1];
const ov3 = @addWithOverflow(ov1[0] ^ ov2[0], r_carry);
r[i] = ov3[0];
r_carry = ov3[1];
}
while (i < a.len) : (i += 1) {
const ov1 = @subWithOverflow(a[i], a_borrow);
a_borrow = ov1[1];
const ov2 = @addWithOverflow(ov1[0], r_carry);
r[i] = ov2[0];
r_carry = ov2[1];
}
// If both inputs don't share the same sign, an extra limb is required.
if (a_positive != b_positive) {
r[i] = r_carry;
} else {
assert(r_carry == 0);
}
assert(a_borrow == 0);
assert(b_borrow == 0);
return a_positive == b_positive;
}
/// r MUST NOT alias x.
fn llsquareBasecase(r: []Limb, x: []const Limb) void {
@setRuntimeSafety(debug_safety);
const x_norm = x;
assert(r.len >= 2 * x_norm.len + 1);
// Compute the square of a N-limb bigint with only (N^2 + N)/2
// multiplications by exploiting the symmetry of the coefficients around the
// diagonal:
//
// a b c *
// a b c =
// -------------------
// ca cb cc +
// ba bb bc +
// aa ab ac
//
// Note that:
// - Each mixed-product term appears twice for each column,
// - Squares are always in the 2k (0 <= k < N) column
for (x_norm, 0..) |v, i| {
// Accumulate all the x[i]*x[j] (with x!=j) products
const overflow = llmulLimb(.add, r[2 * i + 1 ..], x_norm[i + 1 ..], v);
assert(!overflow);
}
// Each product appears twice, multiply by 2
llshl(r, r[0 .. 2 * x_norm.len], 1);
for (x_norm, 0..) |v, i| {
// Compute and add the squares
const overflow = llmulLimb(.add, r[2 * i ..], x[i..][0..1], v);
assert(!overflow);
}
}
/// Knuth 4.6.3
fn llpow(r: []Limb, a: []const Limb, b: u32, tmp_limbs: []Limb) void {
var tmp1: []Limb = undefined;
var tmp2: []Limb = undefined;
// Multiplication requires no aliasing between the operand and the result
// variable, use the output limbs and another temporary set to overcome this
// limitation.
// The initial assignment makes the result end in `r` so an extra memory
// copy is saved, each 1 flips the index twice so it's only the zeros that
// matter.
const b_leading_zeros = @clz(b);
const exp_zeros = @popCount(~b) - b_leading_zeros;
if (exp_zeros & 1 != 0) {
tmp1 = tmp_limbs;
tmp2 = r;
} else {
tmp1 = r;
tmp2 = tmp_limbs;
}
@memcpy(tmp1[0..a.len], a);
@memset(tmp1[a.len..], 0);
// Scan the exponent as a binary number, from left to right, dropping the
// most significant bit set.
// Square the result if the current bit is zero, square and multiply by a if
// it is one.
const exp_bits = 32 - 1 - b_leading_zeros;
var exp = b << @as(u5, @intCast(1 + b_leading_zeros));
var i: usize = 0;
while (i < exp_bits) : (i += 1) {
// Square
@memset(tmp2, 0);
llsquareBasecase(tmp2, tmp1[0..llnormalize(tmp1)]);
mem.swap([]Limb, &tmp1, &tmp2);
// Multiply by a
const ov = @shlWithOverflow(exp, 1);
exp = ov[0];
if (ov[1] != 0) {
@memset(tmp2, 0);
llmulacc(.add, null, tmp2, tmp1[0..llnormalize(tmp1)], a);
mem.swap([]Limb, &tmp1, &tmp2);
}
}
}
// Storage must live for the lifetime of the returned value
fn fixedIntFromSignedDoubleLimb(A: SignedDoubleLimb, storage: []Limb) Mutable {
assert(storage.len >= 2);
const A_is_positive = A >= 0;
const Au = @as(DoubleLimb, @intCast(if (A < 0) -A else A));
storage[0] = @as(Limb, @truncate(Au));
storage[1] = @as(Limb, @truncate(Au >> limb_bits));
return .{
.limbs = storage[0..2],
.positive = A_is_positive,
.len = 2,
};
}
test {
_ = @import("int_test.zig");
}