zig/lib/std/math/float.zig

189 lines
7.0 KiB
Zig

const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;
/// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic.
inline fn mantissaOne(comptime T: type) comptime_int {
return if (@typeInfo(T).Float.bits == 80) 1 << floatFractionalBits(T) else 0;
}
/// Creates floating point type T from an unbiased exponent and raw mantissa.
inline fn reconstructFloat(comptime T: type, comptime exponent: comptime_int, comptime mantissa: comptime_int) T {
const TBits = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = @bitSizeOf(T) } });
const biased_exponent = @as(TBits, exponent + floatExponentMax(T));
return @as(T, @bitCast((biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa)));
}
/// Returns the number of bits in the exponent of floating point type T.
pub inline fn floatExponentBits(comptime T: type) comptime_int {
comptime assert(@typeInfo(T) == .Float);
return switch (@typeInfo(T).Float.bits) {
16 => 5,
32 => 8,
64 => 11,
80 => 15,
128 => 15,
else => @compileError("unknown floating point type " ++ @typeName(T)),
};
}
/// Returns the number of bits in the mantissa of floating point type T.
pub inline fn floatMantissaBits(comptime T: type) comptime_int {
comptime assert(@typeInfo(T) == .Float);
return switch (@typeInfo(T).Float.bits) {
16 => 10,
32 => 23,
64 => 52,
80 => 64,
128 => 112,
else => @compileError("unknown floating point type " ++ @typeName(T)),
};
}
/// Returns the number of fractional bits in the mantissa of floating point type T.
pub inline fn floatFractionalBits(comptime T: type) comptime_int {
comptime assert(@typeInfo(T) == .Float);
// standard IEEE floats have an implicit 0.m or 1.m integer part
// f80 is special and has an explicitly stored bit in the MSB
// this function corresponds to `MANT_DIG - 1' from C
return switch (@typeInfo(T).Float.bits) {
16 => 10,
32 => 23,
64 => 52,
80 => 63,
128 => 112,
else => @compileError("unknown floating point type " ++ @typeName(T)),
};
}
/// Returns the minimum exponent that can represent
/// a normalised value in floating point type T.
pub inline fn floatExponentMin(comptime T: type) comptime_int {
return -floatExponentMax(T) + 1;
}
/// Returns the maximum exponent that can represent
/// a normalised value in floating point type T.
pub inline fn floatExponentMax(comptime T: type) comptime_int {
return (1 << (floatExponentBits(T) - 1)) - 1;
}
/// Returns the smallest subnormal number representable in floating point type T.
pub inline fn floatTrueMin(comptime T: type) T {
return reconstructFloat(T, floatExponentMin(T) - 1, 1);
}
/// Returns the smallest normal number representable in floating point type T.
pub inline fn floatMin(comptime T: type) T {
return reconstructFloat(T, floatExponentMin(T), mantissaOne(T));
}
/// Returns the largest normal number representable in floating point type T.
pub inline fn floatMax(comptime T: type) T {
const all1s_mantissa = (1 << floatMantissaBits(T)) - 1;
return reconstructFloat(T, floatExponentMax(T), all1s_mantissa);
}
/// Returns the machine epsilon of floating point type T.
pub inline fn floatEps(comptime T: type) T {
return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T));
}
/// Returns the local epsilon of floating point type T.
pub inline fn floatEpsAt(comptime T: type, x: T) T {
switch (@typeInfo(T)) {
.Float => |F| {
const U: type = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = F.bits } });
const u: U = @bitCast(x);
const y: T = @bitCast(u ^ 1);
return @abs(x - y);
},
else => @compileError("floatEpsAt only supports floats"),
}
}
/// Returns the value inf for floating point type T.
pub inline fn inf(comptime T: type) T {
return reconstructFloat(T, floatExponentMax(T) + 1, mantissaOne(T));
}
/// Returns the canonical quiet NaN representation for floating point type T.
pub inline fn nan(comptime T: type) T {
return reconstructFloat(
T,
floatExponentMax(T) + 1,
mantissaOne(T) | 1 << (floatFractionalBits(T) - 1),
);
}
/// Returns a signalling NaN representation for floating point type T.
///
/// TODO: LLVM is known to miscompile on some architectures to quiet NaN -
/// this is tracked by https://github.com/ziglang/zig/issues/14366
pub inline fn snan(comptime T: type) T {
return reconstructFloat(
T,
floatExponentMax(T) + 1,
mantissaOne(T) | 1 << (floatFractionalBits(T) - 2),
);
}
test "float bits" {
inline for ([_]type{ f16, f32, f64, f80, f128, c_longdouble }) |T| {
// (1 +) for the sign bit, since it is separate from the other bits
const size = 1 + floatExponentBits(T) + floatMantissaBits(T);
try expect(@bitSizeOf(T) == size);
// for machine epsilon, assert expmin <= -prec <= expmax
try expect(floatExponentMin(T) <= -floatFractionalBits(T));
try expect(-floatFractionalBits(T) <= floatExponentMax(T));
}
}
test inf {
const inf_u16: u16 = 0x7C00;
const inf_u32: u32 = 0x7F800000;
const inf_u64: u64 = 0x7FF0000000000000;
const inf_u80: u80 = 0x7FFF8000000000000000;
const inf_u128: u128 = 0x7FFF0000000000000000000000000000;
try expectEqual(inf_u16, @as(u16, @bitCast(inf(f16))));
try expectEqual(inf_u32, @as(u32, @bitCast(inf(f32))));
try expectEqual(inf_u64, @as(u64, @bitCast(inf(f64))));
try expectEqual(inf_u80, @as(u80, @bitCast(inf(f80))));
try expectEqual(inf_u128, @as(u128, @bitCast(inf(f128))));
}
test nan {
const qnan_u16: u16 = 0x7E00;
const qnan_u32: u32 = 0x7FC00000;
const qnan_u64: u64 = 0x7FF8000000000000;
const qnan_u80: u80 = 0x7FFFC000000000000000;
const qnan_u128: u128 = 0x7FFF8000000000000000000000000000;
try expectEqual(qnan_u16, @as(u16, @bitCast(nan(f16))));
try expectEqual(qnan_u32, @as(u32, @bitCast(nan(f32))));
try expectEqual(qnan_u64, @as(u64, @bitCast(nan(f64))));
try expectEqual(qnan_u80, @as(u80, @bitCast(nan(f80))));
try expectEqual(qnan_u128, @as(u128, @bitCast(nan(f128))));
}
test snan {
// TODO: https://github.com/ziglang/zig/issues/14366
if (builtin.zig_backend == .stage2_llvm and comptime builtin.cpu.arch.isArmOrThumb()) return error.SkipZigTest;
const snan_u16: u16 = 0x7D00;
const snan_u32: u32 = 0x7FA00000;
const snan_u64: u64 = 0x7FF4000000000000;
const snan_u80: u80 = 0x7FFFA000000000000000;
const snan_u128: u128 = 0x7FFF4000000000000000000000000000;
try expectEqual(snan_u16, @as(u16, @bitCast(snan(f16))));
try expectEqual(snan_u32, @as(u32, @bitCast(snan(f32))));
try expectEqual(snan_u64, @as(u64, @bitCast(snan(f64))));
try expectEqual(snan_u80, @as(u80, @bitCast(snan(f80))));
try expectEqual(snan_u128, @as(u128, @bitCast(snan(f128))));
}