zig/lib/std/math/gcd.zig
2022-09-29 21:42:56 +03:00

49 lines
1.5 KiB
Zig

//! Greatest common divisor (https://mathworld.wolfram.com/GreatestCommonDivisor.html)
const std = @import("std");
const expectEqual = std.testing.expectEqual;
/// Returns the greatest common divisor (GCD) of two unsigned integers (a and b) which are not both zero.
/// For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) == 4.
pub fn gcd(a: anytype, b: anytype) @TypeOf(a, b) {
// only unsigned integers are allowed and not both must be zero
comptime switch (@typeInfo(@TypeOf(a, b))) {
.Int => |int| std.debug.assert(int.signedness == .unsigned),
.ComptimeInt => {
std.debug.assert(a >= 0);
std.debug.assert(b >= 0);
},
else => unreachable,
};
std.debug.assert(a != 0 or b != 0);
// if one of them is zero, the other is returned
if (a == 0) return b;
if (b == 0) return a;
// init vars
var x: @TypeOf(a, b) = a;
var y: @TypeOf(a, b) = b;
var m: @TypeOf(a, b) = a;
// using the Euclidean algorithm (https://mathworld.wolfram.com/EuclideanAlgorithm.html)
while (y != 0) {
m = x % y;
x = y;
y = m;
}
return x;
}
test "gcd" {
try expectEqual(gcd(0, 5), 5);
try expectEqual(gcd(5, 0), 5);
try expectEqual(gcd(8, 12), 4);
try expectEqual(gcd(12, 8), 4);
try expectEqual(gcd(33, 77), 11);
try expectEqual(gcd(77, 33), 11);
try expectEqual(gcd(49865, 69811), 9973);
try expectEqual(gcd(300_000, 2_300_000), 100_000);
try expectEqual(gcd(90000000_000_000_000_000_000, 2), 2);
}