zig/lib/std/buf_map.zig
2023-04-22 13:09:15 +03:00

126 lines
4.2 KiB
Zig

const std = @import("std.zig");
const StringHashMap = std.StringHashMap;
const mem = std.mem;
const Allocator = mem.Allocator;
const testing = std.testing;
/// BufMap copies keys and values before they go into the map and
/// frees them when they get removed.
pub const BufMap = struct {
hash_map: BufMapHashMap,
const BufMapHashMap = StringHashMap([]const u8);
/// Create a BufMap backed by a specific allocator.
/// That allocator will be used for both backing allocations
/// and string deduplication.
pub fn init(allocator: Allocator) BufMap {
var self = BufMap{ .hash_map = BufMapHashMap.init(allocator) };
return self;
}
/// Free the backing storage of the map, as well as all
/// of the stored keys and values.
pub fn deinit(self: *BufMap) void {
var it = self.hash_map.iterator();
while (it.next()) |entry| {
self.free(entry.key_ptr.*);
self.free(entry.value_ptr.*);
}
self.hash_map.deinit();
}
/// Same as `put` but the key and value become owned by the BufMap rather
/// than being copied.
/// If `putMove` fails, the ownership of key and value does not transfer.
pub fn putMove(self: *BufMap, key: []u8, value: []u8) !void {
const get_or_put = try self.hash_map.getOrPut(key);
if (get_or_put.found_existing) {
self.free(get_or_put.key_ptr.*);
self.free(get_or_put.value_ptr.*);
get_or_put.key_ptr.* = key;
}
get_or_put.value_ptr.* = value;
}
/// `key` and `value` are copied into the BufMap.
pub fn put(self: *BufMap, key: []const u8, value: []const u8) !void {
const value_copy = try self.copy(value);
errdefer self.free(value_copy);
const get_or_put = try self.hash_map.getOrPut(key);
if (get_or_put.found_existing) {
self.free(get_or_put.value_ptr.*);
} else {
get_or_put.key_ptr.* = self.copy(key) catch |err| {
_ = self.hash_map.remove(key);
return err;
};
}
get_or_put.value_ptr.* = value_copy;
}
/// Find the address of the value associated with a key.
/// The returned pointer is invalidated if the map resizes.
pub fn getPtr(self: BufMap, key: []const u8) ?*[]const u8 {
return self.hash_map.getPtr(key);
}
/// Return the map's copy of the value associated with
/// a key. The returned string is invalidated if this
/// key is removed from the map.
pub fn get(self: BufMap, key: []const u8) ?[]const u8 {
return self.hash_map.get(key);
}
/// Removes the item from the map and frees its value.
/// This invalidates the value returned by get() for this key.
pub fn remove(self: *BufMap, key: []const u8) void {
const kv = self.hash_map.fetchRemove(key) orelse return;
self.free(kv.key);
self.free(kv.value);
}
/// Returns the number of KV pairs stored in the map.
pub fn count(self: BufMap) BufMapHashMap.Size {
return self.hash_map.count();
}
/// Returns an iterator over entries in the map.
pub fn iterator(self: *const BufMap) BufMapHashMap.Iterator {
return self.hash_map.iterator();
}
fn free(self: BufMap, value: []const u8) void {
self.hash_map.allocator.free(value);
}
fn copy(self: BufMap, value: []const u8) ![]u8 {
return self.hash_map.allocator.dupe(u8, value);
}
};
test "BufMap" {
const allocator = std.testing.allocator;
var bufmap = BufMap.init(allocator);
defer bufmap.deinit();
try bufmap.put("x", "1");
try testing.expect(mem.eql(u8, bufmap.get("x").?, "1"));
try testing.expect(1 == bufmap.count());
try bufmap.put("x", "2");
try testing.expect(mem.eql(u8, bufmap.get("x").?, "2"));
try testing.expect(1 == bufmap.count());
try bufmap.put("x", "3");
try testing.expect(mem.eql(u8, bufmap.get("x").?, "3"));
try testing.expect(1 == bufmap.count());
bufmap.remove("x");
try testing.expect(0 == bufmap.count());
try bufmap.putMove(try allocator.dupe(u8, "k"), try allocator.dupe(u8, "v1"));
try bufmap.putMove(try allocator.dupe(u8, "k"), try allocator.dupe(u8, "v2"));
}