zig/lib/std/coff.zig
mlugg f26dda2117 all: migrate code to new cast builtin syntax
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:

* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00

1390 lines
45 KiB
Zig

const std = @import("std.zig");
const assert = std.debug.assert;
const io = std.io;
const mem = std.mem;
const os = std.os;
const fs = std.fs;
pub const CoffHeaderFlags = packed struct {
/// Image only, Windows CE, and Microsoft Windows NT and later.
/// This indicates that the file does not contain base relocations
/// and must therefore be loaded at its preferred base address.
/// If the base address is not available, the loader reports an error.
/// The default behavior of the linker is to strip base relocations
/// from executable (EXE) files.
RELOCS_STRIPPED: u1 = 0,
/// Image only. This indicates that the image file is valid and can be run.
/// If this flag is not set, it indicates a linker error.
EXECUTABLE_IMAGE: u1 = 0,
/// COFF line numbers have been removed. This flag is deprecated and should be zero.
LINE_NUMS_STRIPPED: u1 = 0,
/// COFF symbol table entries for local symbols have been removed.
/// This flag is deprecated and should be zero.
LOCAL_SYMS_STRIPPED: u1 = 0,
/// Obsolete. Aggressively trim working set.
/// This flag is deprecated for Windows 2000 and later and must be zero.
AGGRESSIVE_WS_TRIM: u1 = 0,
/// Application can handle > 2-GB addresses.
LARGE_ADDRESS_AWARE: u1 = 0,
/// This flag is reserved for future use.
RESERVED: u1 = 0,
/// Little endian: the least significant bit (LSB) precedes the
/// most significant bit (MSB) in memory. This flag is deprecated and should be zero.
BYTES_REVERSED_LO: u1 = 0,
/// Machine is based on a 32-bit-word architecture.
@"32BIT_MACHINE": u1 = 0,
/// Debugging information is removed from the image file.
DEBUG_STRIPPED: u1 = 0,
/// If the image is on removable media, fully load it and copy it to the swap file.
REMOVABLE_RUN_FROM_SWAP: u1 = 0,
/// If the image is on network media, fully load it and copy it to the swap file.
NET_RUN_FROM_SWAP: u1 = 0,
/// The image file is a system file, not a user program.
SYSTEM: u1 = 0,
/// The image file is a dynamic-link library (DLL).
/// Such files are considered executable files for almost all purposes,
/// although they cannot be directly run.
DLL: u1 = 0,
/// The file should be run only on a uniprocessor machine.
UP_SYSTEM_ONLY: u1 = 0,
/// Big endian: the MSB precedes the LSB in memory. This flag is deprecated and should be zero.
BYTES_REVERSED_HI: u1 = 0,
};
pub const CoffHeader = extern struct {
/// The number that identifies the type of target machine.
machine: MachineType,
/// The number of sections. This indicates the size of the section table, which immediately follows the headers.
number_of_sections: u16,
/// The low 32 bits of the number of seconds since 00:00 January 1, 1970 (a C run-time time_t value),
/// which indicates when the file was created.
time_date_stamp: u32,
/// The file offset of the COFF symbol table, or zero if no COFF symbol table is present.
/// This value should be zero for an image because COFF debugging information is deprecated.
pointer_to_symbol_table: u32,
/// The number of entries in the symbol table.
/// This data can be used to locate the string table, which immediately follows the symbol table.
/// This value should be zero for an image because COFF debugging information is deprecated.
number_of_symbols: u32,
/// The size of the optional header, which is required for executable files but not for object files.
/// This value should be zero for an object file. For a description of the header format, see Optional Header (Image Only).
size_of_optional_header: u16,
/// The flags that indicate the attributes of the file.
flags: CoffHeaderFlags,
};
// OptionalHeader.magic values
// see https://msdn.microsoft.com/en-us/library/windows/desktop/ms680339(v=vs.85).aspx
pub const IMAGE_NT_OPTIONAL_HDR32_MAGIC = 0x10b;
pub const IMAGE_NT_OPTIONAL_HDR64_MAGIC = 0x20b;
pub const DllFlags = packed struct {
_reserved_0: u5 = 0,
/// Image can handle a high entropy 64-bit virtual address space.
HIGH_ENTROPY_VA: u1 = 0,
/// DLL can be relocated at load time.
DYNAMIC_BASE: u1 = 0,
/// Code Integrity checks are enforced.
FORCE_INTEGRITY: u1 = 0,
/// Image is NX compatible.
NX_COMPAT: u1 = 0,
/// Isolation aware, but do not isolate the image.
NO_ISOLATION: u1 = 0,
/// Does not use structured exception (SE) handling. No SE handler may be called in this image.
NO_SEH: u1 = 0,
/// Do not bind the image.
NO_BIND: u1 = 0,
/// Image must execute in an AppContainer.
APPCONTAINER: u1 = 0,
/// A WDM driver.
WDM_DRIVER: u1 = 0,
/// Image supports Control Flow Guard.
GUARD_CF: u1 = 0,
/// Terminal Server aware.
TERMINAL_SERVER_AWARE: u1 = 0,
};
pub const Subsystem = enum(u16) {
/// An unknown subsystem
UNKNOWN = 0,
/// Device drivers and native Windows processes
NATIVE = 1,
/// The Windows graphical user interface (GUI) subsystem
WINDOWS_GUI = 2,
/// The Windows character subsystem
WINDOWS_CUI = 3,
/// The OS/2 character subsystem
OS2_CUI = 5,
/// The Posix character subsystem
POSIX_CUI = 7,
/// Native Win9x driver
NATIVE_WINDOWS = 8,
/// Windows CE
WINDOWS_CE_GUI = 9,
/// An Extensible Firmware Interface (EFI) application
EFI_APPLICATION = 10,
/// An EFI driver with boot services
EFI_BOOT_SERVICE_DRIVER = 11,
/// An EFI driver with run-time services
EFI_RUNTIME_DRIVER = 12,
/// An EFI ROM image
EFI_ROM = 13,
/// XBOX
XBOX = 14,
/// Windows boot application
WINDOWS_BOOT_APPLICATION = 16,
};
pub const OptionalHeader = extern struct {
magic: u16,
major_linker_version: u8,
minor_linker_version: u8,
size_of_code: u32,
size_of_initialized_data: u32,
size_of_uninitialized_data: u32,
address_of_entry_point: u32,
base_of_code: u32,
};
pub const OptionalHeaderPE32 = extern struct {
magic: u16,
major_linker_version: u8,
minor_linker_version: u8,
size_of_code: u32,
size_of_initialized_data: u32,
size_of_uninitialized_data: u32,
address_of_entry_point: u32,
base_of_code: u32,
base_of_data: u32,
image_base: u32,
section_alignment: u32,
file_alignment: u32,
major_operating_system_version: u16,
minor_operating_system_version: u16,
major_image_version: u16,
minor_image_version: u16,
major_subsystem_version: u16,
minor_subsystem_version: u16,
win32_version_value: u32,
size_of_image: u32,
size_of_headers: u32,
checksum: u32,
subsystem: Subsystem,
dll_flags: DllFlags,
size_of_stack_reserve: u32,
size_of_stack_commit: u32,
size_of_heap_reserve: u32,
size_of_heap_commit: u32,
loader_flags: u32,
number_of_rva_and_sizes: u32,
};
pub const OptionalHeaderPE64 = extern struct {
magic: u16,
major_linker_version: u8,
minor_linker_version: u8,
size_of_code: u32,
size_of_initialized_data: u32,
size_of_uninitialized_data: u32,
address_of_entry_point: u32,
base_of_code: u32,
image_base: u64,
section_alignment: u32,
file_alignment: u32,
major_operating_system_version: u16,
minor_operating_system_version: u16,
major_image_version: u16,
minor_image_version: u16,
major_subsystem_version: u16,
minor_subsystem_version: u16,
win32_version_value: u32,
size_of_image: u32,
size_of_headers: u32,
checksum: u32,
subsystem: Subsystem,
dll_flags: DllFlags,
size_of_stack_reserve: u64,
size_of_stack_commit: u64,
size_of_heap_reserve: u64,
size_of_heap_commit: u64,
loader_flags: u32,
number_of_rva_and_sizes: u32,
};
pub const IMAGE_NUMBEROF_DIRECTORY_ENTRIES = 16;
pub const DirectoryEntry = enum(u16) {
/// Export Directory
EXPORT = 0,
/// Import Directory
IMPORT = 1,
/// Resource Directory
RESOURCE = 2,
/// Exception Directory
EXCEPTION = 3,
/// Security Directory
SECURITY = 4,
/// Base Relocation Table
BASERELOC = 5,
/// Debug Directory
DEBUG = 6,
/// Architecture Specific Data
ARCHITECTURE = 7,
/// RVA of GP
GLOBALPTR = 8,
/// TLS Directory
TLS = 9,
/// Load Configuration Directory
LOAD_CONFIG = 10,
/// Bound Import Directory in headers
BOUND_IMPORT = 11,
/// Import Address Table
IAT = 12,
/// Delay Load Import Descriptors
DELAY_IMPORT = 13,
/// COM Runtime descriptor
COM_DESCRIPTOR = 14,
};
pub const ImageDataDirectory = extern struct {
virtual_address: u32,
size: u32,
};
pub const BaseRelocationDirectoryEntry = extern struct {
/// The image base plus the page RVA is added to each offset to create the VA where the base relocation must be applied.
page_rva: u32,
/// The total number of bytes in the base relocation block, including the Page RVA and Block Size fields and the Type/Offset fields that follow.
block_size: u32,
};
pub const BaseRelocation = packed struct {
/// Stored in the remaining 12 bits of the WORD, an offset from the starting address that was specified in the Page RVA field for the block.
/// This offset specifies where the base relocation is to be applied.
offset: u12,
/// Stored in the high 4 bits of the WORD, a value that indicates the type of base relocation to be applied.
type: BaseRelocationType,
};
pub const BaseRelocationType = enum(u4) {
/// The base relocation is skipped. This type can be used to pad a block.
ABSOLUTE = 0,
/// The base relocation adds the high 16 bits of the difference to the 16-bit field at offset. The 16-bit field represents the high value of a 32-bit word.
HIGH = 1,
/// The base relocation adds the low 16 bits of the difference to the 16-bit field at offset. The 16-bit field represents the low half of a 32-bit word.
LOW = 2,
/// The base relocation applies all 32 bits of the difference to the 32-bit field at offset.
HIGHLOW = 3,
/// The base relocation adds the high 16 bits of the difference to the 16-bit field at offset.
/// The 16-bit field represents the high value of a 32-bit word.
/// The low 16 bits of the 32-bit value are stored in the 16-bit word that follows this base relocation.
/// This means that this base relocation occupies two slots.
HIGHADJ = 4,
/// When the machine type is MIPS, the base relocation applies to a MIPS jump instruction.
MIPS_JMPADDR = 5,
/// This relocation is meaningful only when the machine type is ARM or Thumb.
/// The base relocation applies the 32-bit address of a symbol across a consecutive MOVW/MOVT instruction pair.
// ARM_MOV32 = 5,
/// This relocation is only meaningful when the machine type is RISC-V.
/// The base relocation applies to the high 20 bits of a 32-bit absolute address.
// RISCV_HIGH20 = 5,
/// Reserved, must be zero.
RESERVED = 6,
/// This relocation is meaningful only when the machine type is Thumb.
/// The base relocation applies the 32-bit address of a symbol to a consecutive MOVW/MOVT instruction pair.
THUMB_MOV32 = 7,
/// This relocation is only meaningful when the machine type is RISC-V.
/// The base relocation applies to the low 12 bits of a 32-bit absolute address formed in RISC-V I-type instruction format.
// RISCV_LOW12I = 7,
/// This relocation is only meaningful when the machine type is RISC-V.
/// The base relocation applies to the low 12 bits of a 32-bit absolute address formed in RISC-V S-type instruction format.
RISCV_LOW12S = 8,
/// This relocation is only meaningful when the machine type is LoongArch 32-bit.
/// The base relocation applies to a 32-bit absolute address formed in two consecutive instructions.
// LOONGARCH32_MARK_LA = 8,
/// This relocation is only meaningful when the machine type is LoongArch 64-bit.
/// The base relocation applies to a 64-bit absolute address formed in four consecutive instructions.
// LOONGARCH64_MARK_LA = 8,
/// The relocation is only meaningful when the machine type is MIPS.
/// The base relocation applies to a MIPS16 jump instruction.
MIPS_JMPADDR16 = 9,
/// The base relocation applies the difference to the 64-bit field at offset.
DIR64 = 10,
};
pub const DebugDirectoryEntry = extern struct {
characteristics: u32,
time_date_stamp: u32,
major_version: u16,
minor_version: u16,
type: DebugType,
size_of_data: u32,
address_of_raw_data: u32,
pointer_to_raw_data: u32,
};
pub const DebugType = enum(u32) {
UNKNOWN = 0,
COFF = 1,
CODEVIEW = 2,
FPO = 3,
MISC = 4,
EXCEPTION = 5,
FIXUP = 6,
OMAP_TO_SRC = 7,
OMAP_FROM_SRC = 8,
BORLAND = 9,
RESERVED10 = 10,
VC_FEATURE = 12,
POGO = 13,
ILTCG = 14,
MPX = 15,
REPRO = 16,
EX_DLLCHARACTERISTICS = 20,
};
pub const ImportDirectoryEntry = extern struct {
/// The RVA of the import lookup table.
/// This table contains a name or ordinal for each import.
/// (The name "Characteristics" is used in Winnt.h, but no longer describes this field.)
import_lookup_table_rva: u32,
/// The stamp that is set to zero until the image is bound.
/// After the image is bound, this field is set to the time/data stamp of the DLL.
time_date_stamp: u32,
/// The index of the first forwarder reference.
forwarder_chain: u32,
/// The address of an ASCII string that contains the name of the DLL.
/// This address is relative to the image base.
name_rva: u32,
/// The RVA of the import address table.
/// The contents of this table are identical to the contents of the import lookup table until the image is bound.
import_address_table_rva: u32,
};
pub const ImportLookupEntry32 = struct {
pub const ByName = packed struct {
name_table_rva: u31,
flag: u1 = 0,
};
pub const ByOrdinal = packed struct {
ordinal_number: u16,
unused: u15 = 0,
flag: u1 = 1,
};
const mask = 0x80000000;
pub fn getImportByName(raw: u32) ?ByName {
if (mask & raw != 0) return null;
return @as(ByName, @bitCast(raw));
}
pub fn getImportByOrdinal(raw: u32) ?ByOrdinal {
if (mask & raw == 0) return null;
return @as(ByOrdinal, @bitCast(raw));
}
};
pub const ImportLookupEntry64 = struct {
pub const ByName = packed struct {
name_table_rva: u31,
unused: u32 = 0,
flag: u1 = 0,
};
pub const ByOrdinal = packed struct {
ordinal_number: u16,
unused: u47 = 0,
flag: u1 = 1,
};
const mask = 0x8000000000000000;
pub fn getImportByName(raw: u64) ?ByName {
if (mask & raw != 0) return null;
return @as(ByName, @bitCast(raw));
}
pub fn getImportByOrdinal(raw: u64) ?ByOrdinal {
if (mask & raw == 0) return null;
return @as(ByOrdinal, @bitCast(raw));
}
};
/// Every name ends with a NULL byte. IF the NULL byte does not fall on
/// 2byte boundary, the entry structure is padded to ensure 2byte alignment.
pub const ImportHintNameEntry = extern struct {
/// An index into the export name pointer table.
/// A match is attempted first with this value. If it fails, a binary search is performed on the DLL's export name pointer table.
hint: u16,
/// Pointer to NULL terminated ASCII name.
/// Variable length...
name: [1]u8,
};
pub const SectionHeader = extern struct {
name: [8]u8,
virtual_size: u32,
virtual_address: u32,
size_of_raw_data: u32,
pointer_to_raw_data: u32,
pointer_to_relocations: u32,
pointer_to_linenumbers: u32,
number_of_relocations: u16,
number_of_linenumbers: u16,
flags: SectionHeaderFlags,
pub fn getName(self: *align(1) const SectionHeader) ?[]const u8 {
if (self.name[0] == '/') return null;
const len = std.mem.indexOfScalar(u8, &self.name, @as(u8, 0)) orelse self.name.len;
return self.name[0..len];
}
pub fn getNameOffset(self: SectionHeader) ?u32 {
if (self.name[0] != '/') return null;
const len = std.mem.indexOfScalar(u8, &self.name, @as(u8, 0)) orelse self.name.len;
const offset = std.fmt.parseInt(u32, self.name[1..len], 10) catch unreachable;
return offset;
}
/// Applicable only to section headers in COFF objects.
pub fn getAlignment(self: SectionHeader) ?u16 {
if (self.flags.ALIGN == 0) return null;
return std.math.powi(u16, 2, self.flags.ALIGN - 1) catch unreachable;
}
pub fn setAlignment(self: *SectionHeader, new_alignment: u16) void {
assert(new_alignment > 0 and new_alignment <= 8192);
self.flags.ALIGN = std.math.log2(new_alignment);
}
pub fn isCode(self: SectionHeader) bool {
return self.flags.CNT_CODE == 0b1;
}
pub fn isComdat(self: SectionHeader) bool {
return self.flags.LNK_COMDAT == 0b1;
}
};
pub const SectionHeaderFlags = packed struct {
_reserved_0: u3 = 0,
/// The section should not be padded to the next boundary.
/// This flag is obsolete and is replaced by IMAGE_SCN_ALIGN_1BYTES.
/// This is valid only for object files.
TYPE_NO_PAD: u1 = 0,
_reserved_1: u1 = 0,
/// The section contains executable code.
CNT_CODE: u1 = 0,
/// The section contains initialized data.
CNT_INITIALIZED_DATA: u1 = 0,
/// The section contains uninitialized data.
CNT_UNINITIALIZED_DATA: u1 = 0,
/// Reserved for future use.
LNK_OTHER: u1 = 0,
/// The section contains comments or other information.
/// The .drectve section has this type.
/// This is valid for object files only.
LNK_INFO: u1 = 0,
_reserverd_2: u1 = 0,
/// The section will not become part of the image.
/// This is valid only for object files.
LNK_REMOVE: u1 = 0,
/// The section contains COMDAT data.
/// For more information, see COMDAT Sections (Object Only).
/// This is valid only for object files.
LNK_COMDAT: u1 = 0,
_reserved_3: u2 = 0,
/// The section contains data referenced through the global pointer (GP).
GPREL: u1 = 0,
/// Reserved for future use.
MEM_PURGEABLE: u1 = 0,
/// Reserved for future use.
MEM_16BIT: u1 = 0,
/// Reserved for future use.
MEM_LOCKED: u1 = 0,
/// Reserved for future use.
MEM_PRELOAD: u1 = 0,
/// Takes on multiple values according to flags:
/// pub const IMAGE_SCN_ALIGN_1BYTES: u32 = 0x100000;
/// pub const IMAGE_SCN_ALIGN_2BYTES: u32 = 0x200000;
/// pub const IMAGE_SCN_ALIGN_4BYTES: u32 = 0x300000;
/// pub const IMAGE_SCN_ALIGN_8BYTES: u32 = 0x400000;
/// pub const IMAGE_SCN_ALIGN_16BYTES: u32 = 0x500000;
/// pub const IMAGE_SCN_ALIGN_32BYTES: u32 = 0x600000;
/// pub const IMAGE_SCN_ALIGN_64BYTES: u32 = 0x700000;
/// pub const IMAGE_SCN_ALIGN_128BYTES: u32 = 0x800000;
/// pub const IMAGE_SCN_ALIGN_256BYTES: u32 = 0x900000;
/// pub const IMAGE_SCN_ALIGN_512BYTES: u32 = 0xA00000;
/// pub const IMAGE_SCN_ALIGN_1024BYTES: u32 = 0xB00000;
/// pub const IMAGE_SCN_ALIGN_2048BYTES: u32 = 0xC00000;
/// pub const IMAGE_SCN_ALIGN_4096BYTES: u32 = 0xD00000;
/// pub const IMAGE_SCN_ALIGN_8192BYTES: u32 = 0xE00000;
ALIGN: u4 = 0,
/// The section contains extended relocations.
LNK_NRELOC_OVFL: u1 = 0,
/// The section can be discarded as needed.
MEM_DISCARDABLE: u1 = 0,
/// The section cannot be cached.
MEM_NOT_CACHED: u1 = 0,
/// The section is not pageable.
MEM_NOT_PAGED: u1 = 0,
/// The section can be shared in memory.
MEM_SHARED: u1 = 0,
/// The section can be executed as code.
MEM_EXECUTE: u1 = 0,
/// The section can be read.
MEM_READ: u1 = 0,
/// The section can be written to.
MEM_WRITE: u1 = 0,
};
pub const Symbol = struct {
name: [8]u8,
value: u32,
section_number: SectionNumber,
type: SymType,
storage_class: StorageClass,
number_of_aux_symbols: u8,
pub fn sizeOf() usize {
return 18;
}
pub fn getName(self: *const Symbol) ?[]const u8 {
if (std.mem.eql(u8, self.name[0..4], "\x00\x00\x00\x00")) return null;
const len = std.mem.indexOfScalar(u8, &self.name, @as(u8, 0)) orelse self.name.len;
return self.name[0..len];
}
pub fn getNameOffset(self: Symbol) ?u32 {
if (!std.mem.eql(u8, self.name[0..4], "\x00\x00\x00\x00")) return null;
const offset = std.mem.readIntLittle(u32, self.name[4..8]);
return offset;
}
};
pub const SectionNumber = enum(u16) {
/// The symbol record is not yet assigned a section.
/// A value of zero indicates that a reference to an external symbol is defined elsewhere.
/// A value of non-zero is a common symbol with a size that is specified by the value.
UNDEFINED = 0,
/// The symbol has an absolute (non-relocatable) value and is not an address.
ABSOLUTE = 0xffff,
/// The symbol provides general type or debugging information but does not correspond to a section.
/// Microsoft tools use this setting along with .file records (storage class FILE).
DEBUG = 0xfffe,
_,
};
pub const SymType = packed struct {
complex_type: ComplexType,
base_type: BaseType,
};
pub const BaseType = enum(u8) {
/// No type information or unknown base type. Microsoft tools use this setting
NULL = 0,
/// No valid type; used with void pointers and functions
VOID = 1,
/// A character (signed byte)
CHAR = 2,
/// A 2-byte signed integer
SHORT = 3,
/// A natural integer type (normally 4 bytes in Windows)
INT = 4,
/// A 4-byte signed integer
LONG = 5,
/// A 4-byte floating-point number
FLOAT = 6,
/// An 8-byte floating-point number
DOUBLE = 7,
/// A structure
STRUCT = 8,
/// A union
UNION = 9,
/// An enumerated type
ENUM = 10,
/// A member of enumeration (a specified value)
MOE = 11,
/// A byte; unsigned 1-byte integer
BYTE = 12,
/// A word; unsigned 2-byte integer
WORD = 13,
/// An unsigned integer of natural size (normally, 4 bytes)
UINT = 14,
/// An unsigned 4-byte integer
DWORD = 15,
};
pub const ComplexType = enum(u8) {
/// No derived type; the symbol is a simple scalar variable.
NULL = 0,
/// The symbol is a pointer to base type.
POINTER = 16,
/// The symbol is a function that returns a base type.
FUNCTION = 32,
/// The symbol is an array of base type.
ARRAY = 48,
};
pub const StorageClass = enum(u8) {
/// A special symbol that represents the end of function, for debugging purposes.
END_OF_FUNCTION = 0xff,
/// No assigned storage class.
NULL = 0,
/// The automatic (stack) variable. The Value field specifies the stack frame offset.
AUTOMATIC = 1,
/// A value that Microsoft tools use for external symbols.
/// The Value field indicates the size if the section number is IMAGE_SYM_UNDEFINED (0).
/// If the section number is not zero, then the Value field specifies the offset within the section.
EXTERNAL = 2,
/// The offset of the symbol within the section.
/// If the Value field is zero, then the symbol represents a section name.
STATIC = 3,
/// A register variable.
/// The Value field specifies the register number.
REGISTER = 4,
/// A symbol that is defined externally.
EXTERNAL_DEF = 5,
/// A code label that is defined within the module.
/// The Value field specifies the offset of the symbol within the section.
LABEL = 6,
/// A reference to a code label that is not defined.
UNDEFINED_LABEL = 7,
/// The structure member. The Value field specifies the n th member.
MEMBER_OF_STRUCT = 8,
/// A formal argument (parameter) of a function. The Value field specifies the n th argument.
ARGUMENT = 9,
/// The structure tag-name entry.
STRUCT_TAG = 10,
/// A union member. The Value field specifies the n th member.
MEMBER_OF_UNION = 11,
/// The Union tag-name entry.
UNION_TAG = 12,
/// A Typedef entry.
TYPE_DEFINITION = 13,
/// A static data declaration.
UNDEFINED_STATIC = 14,
/// An enumerated type tagname entry.
ENUM_TAG = 15,
/// A member of an enumeration. The Value field specifies the n th member.
MEMBER_OF_ENUM = 16,
/// A register parameter.
REGISTER_PARAM = 17,
/// A bit-field reference. The Value field specifies the n th bit in the bit field.
BIT_FIELD = 18,
/// A .bb (beginning of block) or .eb (end of block) record.
/// The Value field is the relocatable address of the code location.
BLOCK = 100,
/// A value that Microsoft tools use for symbol records that define the extent of a function: begin function (.bf ), end function ( .ef ), and lines in function ( .lf ).
/// For .lf records, the Value field gives the number of source lines in the function.
/// For .ef records, the Value field gives the size of the function code.
FUNCTION = 101,
/// An end-of-structure entry.
END_OF_STRUCT = 102,
/// A value that Microsoft tools, as well as traditional COFF format, use for the source-file symbol record.
/// The symbol is followed by auxiliary records that name the file.
FILE = 103,
/// A definition of a section (Microsoft tools use STATIC storage class instead).
SECTION = 104,
/// A weak external. For more information, see Auxiliary Format 3: Weak Externals.
WEAK_EXTERNAL = 105,
/// A CLR token symbol. The name is an ASCII string that consists of the hexadecimal value of the token.
/// For more information, see CLR Token Definition (Object Only).
CLR_TOKEN = 107,
};
pub const FunctionDefinition = struct {
/// The symbol-table index of the corresponding .bf (begin function) symbol record.
tag_index: u32,
/// The size of the executable code for the function itself.
/// If the function is in its own section, the SizeOfRawData in the section header is greater or equal to this field,
/// depending on alignment considerations.
total_size: u32,
/// The file offset of the first COFF line-number entry for the function, or zero if none exists.
pointer_to_linenumber: u32,
/// The symbol-table index of the record for the next function.
/// If the function is the last in the symbol table, this field is set to zero.
pointer_to_next_function: u32,
unused: [2]u8,
};
pub const SectionDefinition = struct {
/// The size of section data; the same as SizeOfRawData in the section header.
length: u32,
/// The number of relocation entries for the section.
number_of_relocations: u16,
/// The number of line-number entries for the section.
number_of_linenumbers: u16,
/// The checksum for communal data. It is applicable if the IMAGE_SCN_LNK_COMDAT flag is set in the section header.
checksum: u32,
/// One-based index into the section table for the associated section. This is used when the COMDAT selection setting is 5.
number: u16,
/// The COMDAT selection number. This is applicable if the section is a COMDAT section.
selection: ComdatSelection,
unused: [3]u8,
};
pub const FileDefinition = struct {
/// An ANSI string that gives the name of the source file.
/// This is padded with nulls if it is less than the maximum length.
file_name: [18]u8,
pub fn getFileName(self: *const FileDefinition) []const u8 {
const len = std.mem.indexOfScalar(u8, &self.file_name, @as(u8, 0)) orelse self.file_name.len;
return self.file_name[0..len];
}
};
pub const WeakExternalDefinition = struct {
/// The symbol-table index of sym2, the symbol to be linked if sym1 is not found.
tag_index: u32,
/// A value of IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY indicates that no library search for sym1 should be performed.
/// A value of IMAGE_WEAK_EXTERN_SEARCH_LIBRARY indicates that a library search for sym1 should be performed.
/// A value of IMAGE_WEAK_EXTERN_SEARCH_ALIAS indicates that sym1 is an alias for sym2.
flag: WeakExternalFlag,
unused: [10]u8,
};
// https://github.com/tpn/winsdk-10/blob/master/Include/10.0.16299.0/km/ntimage.h
pub const WeakExternalFlag = enum(u32) {
SEARCH_NOLIBRARY = 1,
SEARCH_LIBRARY = 2,
SEARCH_ALIAS = 3,
ANTI_DEPENDENCY = 4,
};
pub const ComdatSelection = enum(u8) {
/// Not a COMDAT section.
NONE = 0,
/// If this symbol is already defined, the linker issues a "multiply defined symbol" error.
NODUPLICATES = 1,
/// Any section that defines the same COMDAT symbol can be linked; the rest are removed.
ANY = 2,
/// The linker chooses an arbitrary section among the definitions for this symbol.
/// If all definitions are not the same size, a "multiply defined symbol" error is issued.
SAME_SIZE = 3,
/// The linker chooses an arbitrary section among the definitions for this symbol.
/// If all definitions do not match exactly, a "multiply defined symbol" error is issued.
EXACT_MATCH = 4,
/// The section is linked if a certain other COMDAT section is linked.
/// This other section is indicated by the Number field of the auxiliary symbol record for the section definition.
/// This setting is useful for definitions that have components in multiple sections
/// (for example, code in one and data in another), but where all must be linked or discarded as a set.
/// The other section this section is associated with must be a COMDAT section, which can be another
/// associative COMDAT section. An associative COMDAT section's section association chain can't form a loop.
/// The section association chain must eventually come to a COMDAT section that doesn't have IMAGE_COMDAT_SELECT_ASSOCIATIVE set.
ASSOCIATIVE = 5,
/// The linker chooses the largest definition from among all of the definitions for this symbol.
/// If multiple definitions have this size, the choice between them is arbitrary.
LARGEST = 6,
};
pub const DebugInfoDefinition = struct {
unused_1: [4]u8,
/// The actual ordinal line number (1, 2, 3, and so on) within the source file, corresponding to the .bf or .ef record.
linenumber: u16,
unused_2: [6]u8,
/// The symbol-table index of the next .bf symbol record.
/// If the function is the last in the symbol table, this field is set to zero.
/// It is not used for .ef records.
pointer_to_next_function: u32,
unused_3: [2]u8,
};
pub const MachineType = enum(u16) {
Unknown = 0x0,
/// Matsushita AM33
AM33 = 0x1d3,
/// x64
X64 = 0x8664,
/// ARM little endian
ARM = 0x1c0,
/// ARM64 little endian
ARM64 = 0xaa64,
/// ARM Thumb-2 little endian
ARMNT = 0x1c4,
/// EFI byte code
EBC = 0xebc,
/// Intel 386 or later processors and compatible processors
I386 = 0x14c,
/// Intel Itanium processor family
IA64 = 0x200,
/// Mitsubishi M32R little endian
M32R = 0x9041,
/// MIPS16
MIPS16 = 0x266,
/// MIPS with FPU
MIPSFPU = 0x366,
/// MIPS16 with FPU
MIPSFPU16 = 0x466,
/// Power PC little endian
POWERPC = 0x1f0,
/// Power PC with floating point support
POWERPCFP = 0x1f1,
/// MIPS little endian
R4000 = 0x166,
/// RISC-V 32-bit address space
RISCV32 = 0x5032,
/// RISC-V 64-bit address space
RISCV64 = 0x5064,
/// RISC-V 128-bit address space
RISCV128 = 0x5128,
/// Hitachi SH3
SH3 = 0x1a2,
/// Hitachi SH3 DSP
SH3DSP = 0x1a3,
/// Hitachi SH4
SH4 = 0x1a6,
/// Hitachi SH5
SH5 = 0x1a8,
/// Thumb
Thumb = 0x1c2,
/// MIPS little-endian WCE v2
WCEMIPSV2 = 0x169,
pub fn fromTargetCpuArch(arch: std.Target.Cpu.Arch) MachineType {
return switch (arch) {
.arm => .ARM,
.powerpc => .POWERPC,
.riscv32 => .RISCV32,
.thumb => .Thumb,
.x86 => .I386,
.aarch64 => .ARM64,
.riscv64 => .RISCV64,
.x86_64 => .X64,
// there's cases we don't (yet) handle
else => unreachable,
};
}
pub fn toTargetCpuArch(machine_type: MachineType) ?std.Target.Cpu.Arch {
return switch (machine_type) {
.ARM => .arm,
.POWERPC => .powerpc,
.RISCV32 => .riscv32,
.Thumb => .thumb,
.I386 => .x86,
.ARM64 => .aarch64,
.RISCV64 => .riscv64,
.X64 => .x86_64,
// there's cases we don't (yet) handle
else => null,
};
}
};
pub const CoffError = error{
InvalidPEMagic,
InvalidPEHeader,
InvalidMachine,
MissingPEHeader,
MissingCoffSection,
MissingStringTable,
};
// Official documentation of the format: https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
pub const Coff = struct {
data: []const u8,
is_image: bool,
coff_header_offset: usize,
guid: [16]u8 = undefined,
age: u32 = undefined,
// The lifetime of `data` must be longer than the lifetime of the returned Coff
pub fn init(data: []const u8) !Coff {
const pe_pointer_offset = 0x3C;
const pe_magic = "PE\x00\x00";
var stream = std.io.fixedBufferStream(data);
const reader = stream.reader();
try stream.seekTo(pe_pointer_offset);
var coff_header_offset = try reader.readIntLittle(u32);
try stream.seekTo(coff_header_offset);
var buf: [4]u8 = undefined;
try reader.readNoEof(&buf);
const is_image = mem.eql(u8, pe_magic, &buf);
var coff = @This(){
.data = data,
.is_image = is_image,
.coff_header_offset = coff_header_offset,
};
// Do some basic validation upfront
if (is_image) {
coff.coff_header_offset = coff.coff_header_offset + 4;
const coff_header = coff.getCoffHeader();
if (coff_header.size_of_optional_header == 0) return error.MissingPEHeader;
}
// JK: we used to check for architecture here and throw an error if not x86 or derivative.
// However I am willing to take a leap of faith and let aarch64 have a shot also.
return coff;
}
pub fn getPdbPath(self: *Coff, buffer: []u8) !usize {
assert(self.is_image);
const data_dirs = self.getDataDirectories();
const debug_dir = data_dirs[@intFromEnum(DirectoryEntry.DEBUG)];
var stream = std.io.fixedBufferStream(self.data);
const reader = stream.reader();
try stream.seekTo(debug_dir.virtual_address);
// Find the correct DebugDirectoryEntry, and where its data is stored.
// It can be in any section.
const debug_dir_entry_count = debug_dir.size / @sizeOf(DebugDirectoryEntry);
var i: u32 = 0;
blk: while (i < debug_dir_entry_count) : (i += 1) {
const debug_dir_entry = try reader.readStruct(DebugDirectoryEntry);
if (debug_dir_entry.type == .CODEVIEW) {
try stream.seekTo(debug_dir_entry.address_of_raw_data);
break :blk;
}
}
var cv_signature: [4]u8 = undefined; // CodeView signature
try reader.readNoEof(cv_signature[0..]);
// 'RSDS' indicates PDB70 format, used by lld.
if (!mem.eql(u8, &cv_signature, "RSDS"))
return error.InvalidPEMagic;
try reader.readNoEof(self.guid[0..]);
self.age = try reader.readIntLittle(u32);
// Finally read the null-terminated string.
var byte = try reader.readByte();
i = 0;
while (byte != 0 and i < buffer.len) : (i += 1) {
buffer[i] = byte;
byte = try reader.readByte();
}
if (byte != 0 and i == buffer.len)
return error.NameTooLong;
return @as(usize, i);
}
pub fn getCoffHeader(self: Coff) CoffHeader {
return @as(*align(1) const CoffHeader, @ptrCast(self.data[self.coff_header_offset..][0..@sizeOf(CoffHeader)])).*;
}
pub fn getOptionalHeader(self: Coff) OptionalHeader {
assert(self.is_image);
const offset = self.coff_header_offset + @sizeOf(CoffHeader);
return @as(*align(1) const OptionalHeader, @ptrCast(self.data[offset..][0..@sizeOf(OptionalHeader)])).*;
}
pub fn getOptionalHeader32(self: Coff) OptionalHeaderPE32 {
assert(self.is_image);
const offset = self.coff_header_offset + @sizeOf(CoffHeader);
return @as(*align(1) const OptionalHeaderPE32, @ptrCast(self.data[offset..][0..@sizeOf(OptionalHeaderPE32)])).*;
}
pub fn getOptionalHeader64(self: Coff) OptionalHeaderPE64 {
assert(self.is_image);
const offset = self.coff_header_offset + @sizeOf(CoffHeader);
return @as(*align(1) const OptionalHeaderPE64, @ptrCast(self.data[offset..][0..@sizeOf(OptionalHeaderPE64)])).*;
}
pub fn getImageBase(self: Coff) u64 {
const hdr = self.getOptionalHeader();
return switch (hdr.magic) {
IMAGE_NT_OPTIONAL_HDR32_MAGIC => self.getOptionalHeader32().image_base,
IMAGE_NT_OPTIONAL_HDR64_MAGIC => self.getOptionalHeader64().image_base,
else => unreachable, // We assume we have validated the header already
};
}
pub fn getNumberOfDataDirectories(self: Coff) u32 {
const hdr = self.getOptionalHeader();
return switch (hdr.magic) {
IMAGE_NT_OPTIONAL_HDR32_MAGIC => self.getOptionalHeader32().number_of_rva_and_sizes,
IMAGE_NT_OPTIONAL_HDR64_MAGIC => self.getOptionalHeader64().number_of_rva_and_sizes,
else => unreachable, // We assume we have validated the header already
};
}
pub fn getDataDirectories(self: *const Coff) []align(1) const ImageDataDirectory {
const hdr = self.getOptionalHeader();
const size: usize = switch (hdr.magic) {
IMAGE_NT_OPTIONAL_HDR32_MAGIC => @sizeOf(OptionalHeaderPE32),
IMAGE_NT_OPTIONAL_HDR64_MAGIC => @sizeOf(OptionalHeaderPE64),
else => unreachable, // We assume we have validated the header already
};
const offset = self.coff_header_offset + @sizeOf(CoffHeader) + size;
return @as([*]align(1) const ImageDataDirectory, @ptrCast(self.data[offset..]))[0..self.getNumberOfDataDirectories()];
}
pub fn getSymtab(self: *const Coff) ?Symtab {
const coff_header = self.getCoffHeader();
if (coff_header.pointer_to_symbol_table == 0) return null;
const offset = coff_header.pointer_to_symbol_table;
const size = coff_header.number_of_symbols * Symbol.sizeOf();
return .{ .buffer = self.data[offset..][0..size] };
}
pub fn getStrtab(self: *const Coff) ?Strtab {
const coff_header = self.getCoffHeader();
if (coff_header.pointer_to_symbol_table == 0) return null;
const offset = coff_header.pointer_to_symbol_table + Symbol.sizeOf() * coff_header.number_of_symbols;
const size = mem.readIntLittle(u32, self.data[offset..][0..4]);
return Strtab{ .buffer = self.data[offset..][0..size] };
}
pub fn getSectionHeaders(self: *const Coff) []align(1) const SectionHeader {
const coff_header = self.getCoffHeader();
const offset = self.coff_header_offset + @sizeOf(CoffHeader) + coff_header.size_of_optional_header;
return @as([*]align(1) const SectionHeader, @ptrCast(self.data.ptr + offset))[0..coff_header.number_of_sections];
}
pub fn getSectionHeadersAlloc(self: *const Coff, allocator: mem.Allocator) ![]SectionHeader {
const section_headers = self.getSectionHeaders();
const out_buff = try allocator.alloc(SectionHeader, section_headers.len);
for (out_buff, 0..) |*section_header, i| {
section_header.* = section_headers[i];
}
return out_buff;
}
pub fn getSectionName(self: *const Coff, sect_hdr: *align(1) const SectionHeader) []const u8 {
const name = sect_hdr.getName() orelse blk: {
const strtab = self.getStrtab().?;
const name_offset = sect_hdr.getNameOffset().?;
break :blk strtab.get(name_offset);
};
return name;
}
pub fn getSectionByName(self: *const Coff, comptime name: []const u8) ?*align(1) const SectionHeader {
for (self.getSectionHeaders()) |*sect| {
if (mem.eql(u8, self.getSectionName(sect), name)) {
return sect;
}
}
return null;
}
pub fn getSectionData(self: *const Coff, comptime name: []const u8) ![]const u8 {
const sec = self.getSectionByName(name) orelse return error.MissingCoffSection;
return self.data[sec.pointer_to_raw_data..][0..sec.virtual_size];
}
// Return an owned slice full of the section data
pub fn getSectionDataAlloc(self: *const Coff, comptime name: []const u8, allocator: mem.Allocator) ![]u8 {
const section_data = try self.getSectionData(name);
return allocator.dupe(u8, section_data);
}
};
pub const Symtab = struct {
buffer: []const u8,
pub fn len(self: Symtab) usize {
return @divExact(self.buffer.len, Symbol.sizeOf());
}
pub const Tag = enum {
symbol,
func_def,
debug_info,
weak_ext,
file_def,
sect_def,
};
pub const Record = union(Tag) {
symbol: Symbol,
debug_info: DebugInfoDefinition,
func_def: FunctionDefinition,
weak_ext: WeakExternalDefinition,
file_def: FileDefinition,
sect_def: SectionDefinition,
};
/// Lives as long as Symtab instance.
pub fn at(self: Symtab, index: usize, tag: Tag) Record {
const offset = index * Symbol.sizeOf();
const raw = self.buffer[offset..][0..Symbol.sizeOf()];
return switch (tag) {
.symbol => .{ .symbol = asSymbol(raw) },
.debug_info => .{ .debug_info = asDebugInfo(raw) },
.func_def => .{ .func_def = asFuncDef(raw) },
.weak_ext => .{ .weak_ext = asWeakExtDef(raw) },
.file_def => .{ .file_def = asFileDef(raw) },
.sect_def => .{ .sect_def = asSectDef(raw) },
};
}
fn asSymbol(raw: []const u8) Symbol {
return .{
.name = raw[0..8].*,
.value = mem.readIntLittle(u32, raw[8..12]),
.section_number = @as(SectionNumber, @enumFromInt(mem.readIntLittle(u16, raw[12..14]))),
.type = @as(SymType, @bitCast(mem.readIntLittle(u16, raw[14..16]))),
.storage_class = @as(StorageClass, @enumFromInt(raw[16])),
.number_of_aux_symbols = raw[17],
};
}
fn asDebugInfo(raw: []const u8) DebugInfoDefinition {
return .{
.unused_1 = raw[0..4].*,
.linenumber = mem.readIntLittle(u16, raw[4..6]),
.unused_2 = raw[6..12].*,
.pointer_to_next_function = mem.readIntLittle(u32, raw[12..16]),
.unused_3 = raw[16..18].*,
};
}
fn asFuncDef(raw: []const u8) FunctionDefinition {
return .{
.tag_index = mem.readIntLittle(u32, raw[0..4]),
.total_size = mem.readIntLittle(u32, raw[4..8]),
.pointer_to_linenumber = mem.readIntLittle(u32, raw[8..12]),
.pointer_to_next_function = mem.readIntLittle(u32, raw[12..16]),
.unused = raw[16..18].*,
};
}
fn asWeakExtDef(raw: []const u8) WeakExternalDefinition {
return .{
.tag_index = mem.readIntLittle(u32, raw[0..4]),
.flag = @as(WeakExternalFlag, @enumFromInt(mem.readIntLittle(u32, raw[4..8]))),
.unused = raw[8..18].*,
};
}
fn asFileDef(raw: []const u8) FileDefinition {
return .{
.file_name = raw[0..18].*,
};
}
fn asSectDef(raw: []const u8) SectionDefinition {
return .{
.length = mem.readIntLittle(u32, raw[0..4]),
.number_of_relocations = mem.readIntLittle(u16, raw[4..6]),
.number_of_linenumbers = mem.readIntLittle(u16, raw[6..8]),
.checksum = mem.readIntLittle(u32, raw[8..12]),
.number = mem.readIntLittle(u16, raw[12..14]),
.selection = @as(ComdatSelection, @enumFromInt(raw[14])),
.unused = raw[15..18].*,
};
}
pub const Slice = struct {
buffer: []const u8,
num: usize,
count: usize = 0,
/// Lives as long as Symtab instance.
pub fn next(self: *Slice) ?Symbol {
if (self.count >= self.num) return null;
const sym = asSymbol(self.buffer[0..Symbol.sizeOf()]);
self.count += 1;
self.buffer = self.buffer[Symbol.sizeOf()..];
return sym;
}
};
pub fn slice(self: Symtab, start: usize, end: ?usize) Slice {
const offset = start * Symbol.sizeOf();
const llen = if (end) |e| e * Symbol.sizeOf() else self.buffer.len;
const num = @divExact(llen - offset, Symbol.sizeOf());
return Slice{ .buffer = self.buffer[offset..][0..llen], .num = num };
}
};
pub const Strtab = struct {
buffer: []const u8,
pub fn get(self: Strtab, off: u32) []const u8 {
assert(off < self.buffer.len);
return mem.sliceTo(@as([*:0]const u8, @ptrCast(self.buffer.ptr + off)), 0);
}
};