zig/lib/std/debug.zig
mlugg f26dda2117 all: migrate code to new cast builtin syntax
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:

* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00

2174 lines
83 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const math = std.math;
const mem = std.mem;
const io = std.io;
const os = std.os;
const fs = std.fs;
const testing = std.testing;
const elf = std.elf;
const DW = std.dwarf;
const macho = std.macho;
const coff = std.coff;
const pdb = std.pdb;
const ArrayList = std.ArrayList;
const root = @import("root");
const maxInt = std.math.maxInt;
const File = std.fs.File;
const windows = std.os.windows;
const native_arch = builtin.cpu.arch;
const native_os = builtin.os.tag;
const native_endian = native_arch.endian();
pub const runtime_safety = switch (builtin.mode) {
.Debug, .ReleaseSafe => true,
.ReleaseFast, .ReleaseSmall => false,
};
pub const sys_can_stack_trace = switch (builtin.cpu.arch) {
// Observed to go into an infinite loop.
// TODO: Make this work.
.mips,
.mipsel,
=> false,
// `@returnAddress()` in LLVM 10 gives
// "Non-Emscripten WebAssembly hasn't implemented __builtin_return_address".
.wasm32,
.wasm64,
=> builtin.os.tag == .emscripten,
// `@returnAddress()` is unsupported in LLVM 13.
.bpfel,
.bpfeb,
=> false,
else => true,
};
pub const LineInfo = struct {
line: u64,
column: u64,
file_name: []const u8,
pub fn deinit(self: LineInfo, allocator: mem.Allocator) void {
allocator.free(self.file_name);
}
};
pub const SymbolInfo = struct {
symbol_name: []const u8 = "???",
compile_unit_name: []const u8 = "???",
line_info: ?LineInfo = null,
pub fn deinit(self: SymbolInfo, allocator: mem.Allocator) void {
if (self.line_info) |li| {
li.deinit(allocator);
}
}
};
const PdbOrDwarf = union(enum) {
pdb: pdb.Pdb,
dwarf: DW.DwarfInfo,
fn deinit(self: *PdbOrDwarf, allocator: mem.Allocator) void {
switch (self.*) {
.pdb => |*inner| inner.deinit(),
.dwarf => |*inner| inner.deinit(allocator),
}
}
};
var stderr_mutex = std.Thread.Mutex{};
/// Print to stderr, unbuffered, and silently returning on failure. Intended
/// for use in "printf debugging." Use `std.log` functions for proper logging.
pub fn print(comptime fmt: []const u8, args: anytype) void {
stderr_mutex.lock();
defer stderr_mutex.unlock();
const stderr = io.getStdErr().writer();
nosuspend stderr.print(fmt, args) catch return;
}
pub fn getStderrMutex() *std.Thread.Mutex {
return &stderr_mutex;
}
/// TODO multithreaded awareness
var self_debug_info: ?DebugInfo = null;
pub fn getSelfDebugInfo() !*DebugInfo {
if (self_debug_info) |*info| {
return info;
} else {
self_debug_info = try openSelfDebugInfo(getDebugInfoAllocator());
return &self_debug_info.?;
}
}
/// Tries to print the current stack trace to stderr, unbuffered, and ignores any error returned.
/// TODO multithreaded awareness
pub fn dumpCurrentStackTrace(start_addr: ?usize) void {
nosuspend {
if (comptime builtin.target.isWasm()) {
if (native_os == .wasi) {
const stderr = io.getStdErr().writer();
stderr.print("Unable to dump stack trace: not implemented for Wasm\n", .{}) catch return;
}
return;
}
const stderr = io.getStdErr().writer();
if (builtin.strip_debug_info) {
stderr.print("Unable to dump stack trace: debug info stripped\n", .{}) catch return;
return;
}
const debug_info = getSelfDebugInfo() catch |err| {
stderr.print("Unable to dump stack trace: Unable to open debug info: {s}\n", .{@errorName(err)}) catch return;
return;
};
writeCurrentStackTrace(stderr, debug_info, io.tty.detectConfig(io.getStdErr()), start_addr) catch |err| {
stderr.print("Unable to dump stack trace: {s}\n", .{@errorName(err)}) catch return;
return;
};
}
}
/// Tries to print the stack trace starting from the supplied base pointer to stderr,
/// unbuffered, and ignores any error returned.
/// TODO multithreaded awareness
pub fn dumpStackTraceFromBase(bp: usize, ip: usize) void {
nosuspend {
if (comptime builtin.target.isWasm()) {
if (native_os == .wasi) {
const stderr = io.getStdErr().writer();
stderr.print("Unable to dump stack trace: not implemented for Wasm\n", .{}) catch return;
}
return;
}
const stderr = io.getStdErr().writer();
if (builtin.strip_debug_info) {
stderr.print("Unable to dump stack trace: debug info stripped\n", .{}) catch return;
return;
}
const debug_info = getSelfDebugInfo() catch |err| {
stderr.print("Unable to dump stack trace: Unable to open debug info: {s}\n", .{@errorName(err)}) catch return;
return;
};
const tty_config = io.tty.detectConfig(io.getStdErr());
if (native_os == .windows) {
writeCurrentStackTraceWindows(stderr, debug_info, tty_config, ip) catch return;
return;
}
printSourceAtAddress(debug_info, stderr, ip, tty_config) catch return;
var it = StackIterator.init(null, bp);
while (it.next()) |return_address| {
// On arm64 macOS, the address of the last frame is 0x0 rather than 0x1 as on x86_64 macOS,
// therefore, we do a check for `return_address == 0` before subtracting 1 from it to avoid
// an overflow. We do not need to signal `StackIterator` as it will correctly detect this
// condition on the subsequent iteration and return `null` thus terminating the loop.
// same behaviour for x86-windows-msvc
const address = if (return_address == 0) return_address else return_address - 1;
printSourceAtAddress(debug_info, stderr, address, tty_config) catch return;
}
}
}
/// Returns a slice with the same pointer as addresses, with a potentially smaller len.
/// On Windows, when first_address is not null, we ask for at least 32 stack frames,
/// and then try to find the first address. If addresses.len is more than 32, we
/// capture that many stack frames exactly, and then look for the first address,
/// chopping off the irrelevant frames and shifting so that the returned addresses pointer
/// equals the passed in addresses pointer.
pub fn captureStackTrace(first_address: ?usize, stack_trace: *std.builtin.StackTrace) void {
if (native_os == .windows) {
const addrs = stack_trace.instruction_addresses;
const first_addr = first_address orelse {
stack_trace.index = walkStackWindows(addrs[0..]);
return;
};
var addr_buf_stack: [32]usize = undefined;
const addr_buf = if (addr_buf_stack.len > addrs.len) addr_buf_stack[0..] else addrs;
const n = walkStackWindows(addr_buf[0..]);
const first_index = for (addr_buf[0..n], 0..) |addr, i| {
if (addr == first_addr) {
break i;
}
} else {
stack_trace.index = 0;
return;
};
const end_index = @min(first_index + addrs.len, n);
const slice = addr_buf[first_index..end_index];
// We use a for loop here because slice and addrs may alias.
for (slice, 0..) |addr, i| {
addrs[i] = addr;
}
stack_trace.index = slice.len;
} else {
var it = StackIterator.init(first_address, null);
for (stack_trace.instruction_addresses, 0..) |*addr, i| {
addr.* = it.next() orelse {
stack_trace.index = i;
return;
};
}
stack_trace.index = stack_trace.instruction_addresses.len;
}
}
/// Tries to print a stack trace to stderr, unbuffered, and ignores any error returned.
/// TODO multithreaded awareness
pub fn dumpStackTrace(stack_trace: std.builtin.StackTrace) void {
nosuspend {
if (comptime builtin.target.isWasm()) {
if (native_os == .wasi) {
const stderr = io.getStdErr().writer();
stderr.print("Unable to dump stack trace: not implemented for Wasm\n", .{}) catch return;
}
return;
}
const stderr = io.getStdErr().writer();
if (builtin.strip_debug_info) {
stderr.print("Unable to dump stack trace: debug info stripped\n", .{}) catch return;
return;
}
const debug_info = getSelfDebugInfo() catch |err| {
stderr.print("Unable to dump stack trace: Unable to open debug info: {s}\n", .{@errorName(err)}) catch return;
return;
};
writeStackTrace(stack_trace, stderr, getDebugInfoAllocator(), debug_info, io.tty.detectConfig(io.getStdErr())) catch |err| {
stderr.print("Unable to dump stack trace: {s}\n", .{@errorName(err)}) catch return;
return;
};
}
}
/// This function invokes undefined behavior when `ok` is `false`.
/// In Debug and ReleaseSafe modes, calls to this function are always
/// generated, and the `unreachable` statement triggers a panic.
/// In ReleaseFast and ReleaseSmall modes, calls to this function are
/// optimized away, and in fact the optimizer is able to use the assertion
/// in its heuristics.
/// Inside a test block, it is best to use the `std.testing` module rather
/// than this function, because this function may not detect a test failure
/// in ReleaseFast and ReleaseSmall mode. Outside of a test block, this assert
/// function is the correct function to use.
pub fn assert(ok: bool) void {
if (!ok) unreachable; // assertion failure
}
pub fn panic(comptime format: []const u8, args: anytype) noreturn {
@setCold(true);
panicExtra(null, null, format, args);
}
/// `panicExtra` is useful when you want to print out an `@errorReturnTrace`
/// and also print out some values.
pub fn panicExtra(
trace: ?*std.builtin.StackTrace,
ret_addr: ?usize,
comptime format: []const u8,
args: anytype,
) noreturn {
@setCold(true);
const size = 0x1000;
const trunc_msg = "(msg truncated)";
var buf: [size + trunc_msg.len]u8 = undefined;
// a minor annoyance with this is that it will result in the NoSpaceLeft
// error being part of the @panic stack trace (but that error should
// only happen rarely)
const msg = std.fmt.bufPrint(buf[0..size], format, args) catch |err| switch (err) {
error.NoSpaceLeft => blk: {
@memcpy(buf[size..], trunc_msg);
break :blk &buf;
},
};
std.builtin.panic(msg, trace, ret_addr);
}
/// Non-zero whenever the program triggered a panic.
/// The counter is incremented/decremented atomically.
var panicking = std.atomic.Atomic(u8).init(0);
// Locked to avoid interleaving panic messages from multiple threads.
var panic_mutex = std.Thread.Mutex{};
/// Counts how many times the panic handler is invoked by this thread.
/// This is used to catch and handle panics triggered by the panic handler.
threadlocal var panic_stage: usize = 0;
// `panicImpl` could be useful in implementing a custom panic handler which
// calls the default handler (on supported platforms)
pub fn panicImpl(trace: ?*const std.builtin.StackTrace, first_trace_addr: ?usize, msg: []const u8) noreturn {
@setCold(true);
if (enable_segfault_handler) {
// If a segfault happens while panicking, we want it to actually segfault, not trigger
// the handler.
resetSegfaultHandler();
}
// Note there is similar logic in handleSegfaultPosix and handleSegfaultWindowsExtra.
nosuspend switch (panic_stage) {
0 => {
panic_stage = 1;
_ = panicking.fetchAdd(1, .SeqCst);
// Make sure to release the mutex when done
{
panic_mutex.lock();
defer panic_mutex.unlock();
const stderr = io.getStdErr().writer();
if (builtin.single_threaded) {
stderr.print("panic: ", .{}) catch os.abort();
} else {
const current_thread_id = std.Thread.getCurrentId();
stderr.print("thread {} panic: ", .{current_thread_id}) catch os.abort();
}
stderr.print("{s}\n", .{msg}) catch os.abort();
if (trace) |t| {
dumpStackTrace(t.*);
}
dumpCurrentStackTrace(first_trace_addr);
}
waitForOtherThreadToFinishPanicking();
},
1 => {
panic_stage = 2;
// A panic happened while trying to print a previous panic message,
// we're still holding the mutex but that's fine as we're going to
// call abort()
const stderr = io.getStdErr().writer();
stderr.print("Panicked during a panic. Aborting.\n", .{}) catch os.abort();
},
else => {
// Panicked while printing "Panicked during a panic."
},
};
os.abort();
}
/// Must be called only after adding 1 to `panicking`. There are three callsites.
fn waitForOtherThreadToFinishPanicking() void {
if (panicking.fetchSub(1, .SeqCst) != 1) {
// Another thread is panicking, wait for the last one to finish
// and call abort()
if (builtin.single_threaded) unreachable;
// Sleep forever without hammering the CPU
var futex = std.atomic.Atomic(u32).init(0);
while (true) std.Thread.Futex.wait(&futex, 0);
unreachable;
}
}
pub fn writeStackTrace(
stack_trace: std.builtin.StackTrace,
out_stream: anytype,
allocator: mem.Allocator,
debug_info: *DebugInfo,
tty_config: io.tty.Config,
) !void {
_ = allocator;
if (builtin.strip_debug_info) return error.MissingDebugInfo;
var frame_index: usize = 0;
var frames_left: usize = @min(stack_trace.index, stack_trace.instruction_addresses.len);
while (frames_left != 0) : ({
frames_left -= 1;
frame_index = (frame_index + 1) % stack_trace.instruction_addresses.len;
}) {
const return_address = stack_trace.instruction_addresses[frame_index];
try printSourceAtAddress(debug_info, out_stream, return_address - 1, tty_config);
}
if (stack_trace.index > stack_trace.instruction_addresses.len) {
const dropped_frames = stack_trace.index - stack_trace.instruction_addresses.len;
tty_config.setColor(out_stream, .bold) catch {};
try out_stream.print("({d} additional stack frames skipped...)\n", .{dropped_frames});
tty_config.setColor(out_stream, .reset) catch {};
}
}
pub const StackIterator = struct {
// Skip every frame before this address is found.
first_address: ?usize,
// Last known value of the frame pointer register.
fp: usize,
pub fn init(first_address: ?usize, fp: ?usize) StackIterator {
if (native_arch == .sparc64) {
// Flush all the register windows on stack.
asm volatile (
\\ flushw
::: "memory");
}
return StackIterator{
.first_address = first_address,
.fp = fp orelse @frameAddress(),
};
}
// Offset of the saved BP wrt the frame pointer.
const fp_offset = if (native_arch.isRISCV())
// On RISC-V the frame pointer points to the top of the saved register
// area, on pretty much every other architecture it points to the stack
// slot where the previous frame pointer is saved.
2 * @sizeOf(usize)
else if (native_arch.isSPARC())
// On SPARC the previous frame pointer is stored at 14 slots past %fp+BIAS.
14 * @sizeOf(usize)
else
0;
const fp_bias = if (native_arch.isSPARC())
// On SPARC frame pointers are biased by a constant.
2047
else
0;
// Positive offset of the saved PC wrt the frame pointer.
const pc_offset = if (native_arch == .powerpc64le)
2 * @sizeOf(usize)
else
@sizeOf(usize);
pub fn next(self: *StackIterator) ?usize {
var address = self.next_internal() orelse return null;
if (self.first_address) |first_address| {
while (address != first_address) {
address = self.next_internal() orelse return null;
}
self.first_address = null;
}
return address;
}
fn isValidMemory(address: usize) bool {
// We are unable to determine validity of memory for freestanding targets
if (native_os == .freestanding) return true;
const aligned_address = address & ~@as(usize, @intCast((mem.page_size - 1)));
const aligned_memory = @as([*]align(mem.page_size) u8, @ptrFromInt(aligned_address))[0..mem.page_size];
if (native_os != .windows) {
if (native_os != .wasi) {
os.msync(aligned_memory, os.MSF.ASYNC) catch |err| {
switch (err) {
os.MSyncError.UnmappedMemory => {
return false;
},
else => unreachable,
}
};
}
return true;
} else {
const w = os.windows;
var memory_info: w.MEMORY_BASIC_INFORMATION = undefined;
// The only error this function can throw is ERROR_INVALID_PARAMETER.
// supply an address that invalid i'll be thrown.
const rc = w.VirtualQuery(aligned_memory, &memory_info, aligned_memory.len) catch {
return false;
};
// Result code has to be bigger than zero (number of bytes written)
if (rc == 0) {
return false;
}
// Free pages cannot be read, they are unmapped
if (memory_info.State == w.MEM_FREE) {
return false;
}
return true;
}
}
fn next_internal(self: *StackIterator) ?usize {
const fp = if (comptime native_arch.isSPARC())
// On SPARC the offset is positive. (!)
math.add(usize, self.fp, fp_offset) catch return null
else
math.sub(usize, self.fp, fp_offset) catch return null;
// Sanity check.
if (fp == 0 or !mem.isAligned(fp, @alignOf(usize)) or !isValidMemory(fp))
return null;
const new_fp = math.add(usize, @as(*const usize, @ptrFromInt(fp)).*, fp_bias) catch return null;
// Sanity check: the stack grows down thus all the parent frames must be
// be at addresses that are greater (or equal) than the previous one.
// A zero frame pointer often signals this is the last frame, that case
// is gracefully handled by the next call to next_internal.
if (new_fp != 0 and new_fp < self.fp)
return null;
const new_pc = @as(
*const usize,
@ptrFromInt(math.add(usize, fp, pc_offset) catch return null),
).*;
self.fp = new_fp;
return new_pc;
}
};
pub fn writeCurrentStackTrace(
out_stream: anytype,
debug_info: *DebugInfo,
tty_config: io.tty.Config,
start_addr: ?usize,
) !void {
if (native_os == .windows) {
return writeCurrentStackTraceWindows(out_stream, debug_info, tty_config, start_addr);
}
var it = StackIterator.init(start_addr, null);
while (it.next()) |return_address| {
// On arm64 macOS, the address of the last frame is 0x0 rather than 0x1 as on x86_64 macOS,
// therefore, we do a check for `return_address == 0` before subtracting 1 from it to avoid
// an overflow. We do not need to signal `StackIterator` as it will correctly detect this
// condition on the subsequent iteration and return `null` thus terminating the loop.
// same behaviour for x86-windows-msvc
const address = if (return_address == 0) return_address else return_address - 1;
try printSourceAtAddress(debug_info, out_stream, address, tty_config);
}
}
pub noinline fn walkStackWindows(addresses: []usize) usize {
if (builtin.cpu.arch == .x86) {
// RtlVirtualUnwind doesn't exist on x86
return windows.ntdll.RtlCaptureStackBackTrace(0, addresses.len, @as(**anyopaque, @ptrCast(addresses.ptr)), null);
}
const tib = @as(*const windows.NT_TIB, @ptrCast(&windows.teb().Reserved1));
var context: windows.CONTEXT = std.mem.zeroes(windows.CONTEXT);
windows.ntdll.RtlCaptureContext(&context);
var i: usize = 0;
var image_base: usize = undefined;
var history_table: windows.UNWIND_HISTORY_TABLE = std.mem.zeroes(windows.UNWIND_HISTORY_TABLE);
while (i < addresses.len) : (i += 1) {
const current_regs = context.getRegs();
if (windows.ntdll.RtlLookupFunctionEntry(current_regs.ip, &image_base, &history_table)) |runtime_function| {
var handler_data: ?*anyopaque = null;
var establisher_frame: u64 = undefined;
_ = windows.ntdll.RtlVirtualUnwind(
windows.UNW_FLAG_NHANDLER,
image_base,
current_regs.ip,
runtime_function,
&context,
&handler_data,
&establisher_frame,
null,
);
} else {
// leaf function
context.setIp(@as(*u64, @ptrFromInt(current_regs.sp)).*);
context.setSp(current_regs.sp + @sizeOf(usize));
}
const next_regs = context.getRegs();
if (next_regs.sp < @intFromPtr(tib.StackLimit) or next_regs.sp > @intFromPtr(tib.StackBase)) {
break;
}
if (next_regs.ip == 0) {
break;
}
addresses[i] = next_regs.ip;
}
return i;
}
pub fn writeCurrentStackTraceWindows(
out_stream: anytype,
debug_info: *DebugInfo,
tty_config: io.tty.Config,
start_addr: ?usize,
) !void {
var addr_buf: [1024]usize = undefined;
const n = walkStackWindows(addr_buf[0..]);
const addrs = addr_buf[0..n];
var start_i: usize = if (start_addr) |saddr| blk: {
for (addrs, 0..) |addr, i| {
if (addr == saddr) break :blk i;
}
return;
} else 0;
for (addrs[start_i..]) |addr| {
try printSourceAtAddress(debug_info, out_stream, addr - 1, tty_config);
}
}
fn machoSearchSymbols(symbols: []const MachoSymbol, address: usize) ?*const MachoSymbol {
var min: usize = 0;
var max: usize = symbols.len - 1;
while (min < max) {
const mid = min + (max - min) / 2;
const curr = &symbols[mid];
const next = &symbols[mid + 1];
if (address >= next.address()) {
min = mid + 1;
} else if (address < curr.address()) {
max = mid;
} else {
return curr;
}
}
const max_sym = &symbols[symbols.len - 1];
if (address >= max_sym.address())
return max_sym;
return null;
}
test "machoSearchSymbols" {
const symbols = [_]MachoSymbol{
.{ .addr = 100, .strx = undefined, .size = undefined, .ofile = undefined },
.{ .addr = 200, .strx = undefined, .size = undefined, .ofile = undefined },
.{ .addr = 300, .strx = undefined, .size = undefined, .ofile = undefined },
};
try testing.expectEqual(@as(?*const MachoSymbol, null), machoSearchSymbols(&symbols, 0));
try testing.expectEqual(@as(?*const MachoSymbol, null), machoSearchSymbols(&symbols, 99));
try testing.expectEqual(&symbols[0], machoSearchSymbols(&symbols, 100).?);
try testing.expectEqual(&symbols[0], machoSearchSymbols(&symbols, 150).?);
try testing.expectEqual(&symbols[0], machoSearchSymbols(&symbols, 199).?);
try testing.expectEqual(&symbols[1], machoSearchSymbols(&symbols, 200).?);
try testing.expectEqual(&symbols[1], machoSearchSymbols(&symbols, 250).?);
try testing.expectEqual(&symbols[1], machoSearchSymbols(&symbols, 299).?);
try testing.expectEqual(&symbols[2], machoSearchSymbols(&symbols, 300).?);
try testing.expectEqual(&symbols[2], machoSearchSymbols(&symbols, 301).?);
try testing.expectEqual(&symbols[2], machoSearchSymbols(&symbols, 5000).?);
}
fn printUnknownSource(debug_info: *DebugInfo, out_stream: anytype, address: usize, tty_config: io.tty.Config) !void {
const module_name = debug_info.getModuleNameForAddress(address);
return printLineInfo(
out_stream,
null,
address,
"???",
module_name orelse "???",
tty_config,
printLineFromFileAnyOs,
);
}
pub fn printSourceAtAddress(debug_info: *DebugInfo, out_stream: anytype, address: usize, tty_config: io.tty.Config) !void {
const module = debug_info.getModuleForAddress(address) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => return printUnknownSource(debug_info, out_stream, address, tty_config),
else => return err,
};
const symbol_info = module.getSymbolAtAddress(debug_info.allocator, address) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => return printUnknownSource(debug_info, out_stream, address, tty_config),
else => return err,
};
defer symbol_info.deinit(debug_info.allocator);
return printLineInfo(
out_stream,
symbol_info.line_info,
address,
symbol_info.symbol_name,
symbol_info.compile_unit_name,
tty_config,
printLineFromFileAnyOs,
);
}
fn printLineInfo(
out_stream: anytype,
line_info: ?LineInfo,
address: usize,
symbol_name: []const u8,
compile_unit_name: []const u8,
tty_config: io.tty.Config,
comptime printLineFromFile: anytype,
) !void {
nosuspend {
try tty_config.setColor(out_stream, .bold);
if (line_info) |*li| {
try out_stream.print("{s}:{d}:{d}", .{ li.file_name, li.line, li.column });
} else {
try out_stream.writeAll("???:?:?");
}
try tty_config.setColor(out_stream, .reset);
try out_stream.writeAll(": ");
try tty_config.setColor(out_stream, .dim);
try out_stream.print("0x{x} in {s} ({s})", .{ address, symbol_name, compile_unit_name });
try tty_config.setColor(out_stream, .reset);
try out_stream.writeAll("\n");
// Show the matching source code line if possible
if (line_info) |li| {
if (printLineFromFile(out_stream, li)) {
if (li.column > 0) {
// The caret already takes one char
const space_needed = @as(usize, @intCast(li.column - 1));
try out_stream.writeByteNTimes(' ', space_needed);
try tty_config.setColor(out_stream, .green);
try out_stream.writeAll("^");
try tty_config.setColor(out_stream, .reset);
}
try out_stream.writeAll("\n");
} else |err| switch (err) {
error.EndOfFile, error.FileNotFound => {},
error.BadPathName => {},
error.AccessDenied => {},
else => return err,
}
}
}
}
pub const OpenSelfDebugInfoError = error{
MissingDebugInfo,
UnsupportedOperatingSystem,
} || @typeInfo(@typeInfo(@TypeOf(DebugInfo.init)).Fn.return_type.?).ErrorUnion.error_set;
pub fn openSelfDebugInfo(allocator: mem.Allocator) OpenSelfDebugInfoError!DebugInfo {
nosuspend {
if (builtin.strip_debug_info)
return error.MissingDebugInfo;
if (@hasDecl(root, "os") and @hasDecl(root.os, "debug") and @hasDecl(root.os.debug, "openSelfDebugInfo")) {
return root.os.debug.openSelfDebugInfo(allocator);
}
switch (native_os) {
.linux,
.freebsd,
.netbsd,
.dragonfly,
.openbsd,
.macos,
.solaris,
.windows,
=> return try DebugInfo.init(allocator),
else => return error.UnsupportedOperatingSystem,
}
}
}
fn readCoffDebugInfo(allocator: mem.Allocator, coff_bytes: []const u8) !ModuleDebugInfo {
nosuspend {
const coff_obj = try allocator.create(coff.Coff);
defer allocator.destroy(coff_obj);
coff_obj.* = try coff.Coff.init(coff_bytes);
var di = ModuleDebugInfo{
.base_address = undefined,
.coff_image_base = coff_obj.getImageBase(),
.coff_section_headers = undefined,
.debug_data = undefined,
};
if (coff_obj.getSectionByName(".debug_info")) |sec| {
// This coff file has embedded DWARF debug info
_ = sec;
const debug_info = coff_obj.getSectionDataAlloc(".debug_info", allocator) catch return error.MissingDebugInfo;
errdefer allocator.free(debug_info);
const debug_abbrev = coff_obj.getSectionDataAlloc(".debug_abbrev", allocator) catch return error.MissingDebugInfo;
errdefer allocator.free(debug_abbrev);
const debug_str = coff_obj.getSectionDataAlloc(".debug_str", allocator) catch return error.MissingDebugInfo;
errdefer allocator.free(debug_str);
const debug_line = coff_obj.getSectionDataAlloc(".debug_line", allocator) catch return error.MissingDebugInfo;
errdefer allocator.free(debug_line);
const debug_str_offsets = coff_obj.getSectionDataAlloc(".debug_str_offsets", allocator) catch null;
const debug_line_str = coff_obj.getSectionDataAlloc(".debug_line_str", allocator) catch null;
const debug_ranges = coff_obj.getSectionDataAlloc(".debug_ranges", allocator) catch null;
const debug_loclists = coff_obj.getSectionDataAlloc(".debug_loclists", allocator) catch null;
const debug_rnglists = coff_obj.getSectionDataAlloc(".debug_rnglists", allocator) catch null;
const debug_addr = coff_obj.getSectionDataAlloc(".debug_addr", allocator) catch null;
const debug_names = coff_obj.getSectionDataAlloc(".debug_names", allocator) catch null;
const debug_frame = coff_obj.getSectionDataAlloc(".debug_frame", allocator) catch null;
var dwarf = DW.DwarfInfo{
.endian = native_endian,
.debug_info = debug_info,
.debug_abbrev = debug_abbrev,
.debug_str = debug_str,
.debug_str_offsets = debug_str_offsets,
.debug_line = debug_line,
.debug_line_str = debug_line_str,
.debug_ranges = debug_ranges,
.debug_loclists = debug_loclists,
.debug_rnglists = debug_rnglists,
.debug_addr = debug_addr,
.debug_names = debug_names,
.debug_frame = debug_frame,
};
DW.openDwarfDebugInfo(&dwarf, allocator) catch |err| {
if (debug_str_offsets) |d| allocator.free(d);
if (debug_line_str) |d| allocator.free(d);
if (debug_ranges) |d| allocator.free(d);
if (debug_loclists) |d| allocator.free(d);
if (debug_rnglists) |d| allocator.free(d);
if (debug_addr) |d| allocator.free(d);
if (debug_names) |d| allocator.free(d);
if (debug_frame) |d| allocator.free(d);
return err;
};
di.debug_data = PdbOrDwarf{ .dwarf = dwarf };
return di;
}
// Only used by pdb path
di.coff_section_headers = try coff_obj.getSectionHeadersAlloc(allocator);
var path_buf: [windows.MAX_PATH]u8 = undefined;
const len = try coff_obj.getPdbPath(path_buf[0..]);
const raw_path = path_buf[0..len];
const path = try fs.path.resolve(allocator, &[_][]const u8{raw_path});
defer allocator.free(path);
di.debug_data = PdbOrDwarf{ .pdb = undefined };
di.debug_data.pdb = pdb.Pdb.init(allocator, path) catch |err| switch (err) {
error.FileNotFound, error.IsDir => return error.MissingDebugInfo,
else => return err,
};
try di.debug_data.pdb.parseInfoStream();
try di.debug_data.pdb.parseDbiStream();
if (!mem.eql(u8, &coff_obj.guid, &di.debug_data.pdb.guid) or coff_obj.age != di.debug_data.pdb.age)
return error.InvalidDebugInfo;
return di;
}
}
fn chopSlice(ptr: []const u8, offset: u64, size: u64) error{Overflow}![]const u8 {
const start = math.cast(usize, offset) orelse return error.Overflow;
const end = start + (math.cast(usize, size) orelse return error.Overflow);
return ptr[start..end];
}
/// This takes ownership of elf_file: users of this function should not close
/// it themselves, even on error.
/// TODO it's weird to take ownership even on error, rework this code.
pub fn readElfDebugInfo(allocator: mem.Allocator, elf_file: File) !ModuleDebugInfo {
nosuspend {
const mapped_mem = try mapWholeFile(elf_file);
const hdr = @as(*const elf.Ehdr, @ptrCast(&mapped_mem[0]));
if (!mem.eql(u8, hdr.e_ident[0..4], elf.MAGIC)) return error.InvalidElfMagic;
if (hdr.e_ident[elf.EI_VERSION] != 1) return error.InvalidElfVersion;
const endian: std.builtin.Endian = switch (hdr.e_ident[elf.EI_DATA]) {
elf.ELFDATA2LSB => .Little,
elf.ELFDATA2MSB => .Big,
else => return error.InvalidElfEndian,
};
assert(endian == native_endian); // this is our own debug info
const shoff = hdr.e_shoff;
const str_section_off = shoff + @as(u64, hdr.e_shentsize) * @as(u64, hdr.e_shstrndx);
const str_shdr: *const elf.Shdr = @ptrCast(@alignCast(
&mapped_mem[math.cast(usize, str_section_off) orelse return error.Overflow],
));
const header_strings = mapped_mem[str_shdr.sh_offset .. str_shdr.sh_offset + str_shdr.sh_size];
const shdrs = @as(
[*]const elf.Shdr,
@ptrCast(@alignCast(&mapped_mem[shoff])),
)[0..hdr.e_shnum];
var opt_debug_info: ?[]const u8 = null;
var opt_debug_abbrev: ?[]const u8 = null;
var opt_debug_str: ?[]const u8 = null;
var opt_debug_str_offsets: ?[]const u8 = null;
var opt_debug_line: ?[]const u8 = null;
var opt_debug_line_str: ?[]const u8 = null;
var opt_debug_ranges: ?[]const u8 = null;
var opt_debug_loclists: ?[]const u8 = null;
var opt_debug_rnglists: ?[]const u8 = null;
var opt_debug_addr: ?[]const u8 = null;
var opt_debug_names: ?[]const u8 = null;
var opt_debug_frame: ?[]const u8 = null;
for (shdrs) |*shdr| {
if (shdr.sh_type == elf.SHT_NULL) continue;
const name = mem.sliceTo(header_strings[shdr.sh_name..], 0);
if (mem.eql(u8, name, ".debug_info")) {
opt_debug_info = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_abbrev")) {
opt_debug_abbrev = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_str")) {
opt_debug_str = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_str_offsets")) {
opt_debug_str_offsets = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_line")) {
opt_debug_line = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_line_str")) {
opt_debug_line_str = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_ranges")) {
opt_debug_ranges = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_loclists")) {
opt_debug_loclists = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_rnglists")) {
opt_debug_rnglists = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_addr")) {
opt_debug_addr = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_names")) {
opt_debug_names = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
} else if (mem.eql(u8, name, ".debug_frame")) {
opt_debug_frame = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size);
}
}
var di = DW.DwarfInfo{
.endian = endian,
.debug_info = opt_debug_info orelse return error.MissingDebugInfo,
.debug_abbrev = opt_debug_abbrev orelse return error.MissingDebugInfo,
.debug_str = opt_debug_str orelse return error.MissingDebugInfo,
.debug_str_offsets = opt_debug_str_offsets,
.debug_line = opt_debug_line orelse return error.MissingDebugInfo,
.debug_line_str = opt_debug_line_str,
.debug_ranges = opt_debug_ranges,
.debug_loclists = opt_debug_loclists,
.debug_rnglists = opt_debug_rnglists,
.debug_addr = opt_debug_addr,
.debug_names = opt_debug_names,
.debug_frame = opt_debug_frame,
};
try DW.openDwarfDebugInfo(&di, allocator);
return ModuleDebugInfo{
.base_address = undefined,
.dwarf = di,
.mapped_memory = mapped_mem,
};
}
}
/// This takes ownership of macho_file: users of this function should not close
/// it themselves, even on error.
/// TODO it's weird to take ownership even on error, rework this code.
fn readMachODebugInfo(allocator: mem.Allocator, macho_file: File) !ModuleDebugInfo {
const mapped_mem = try mapWholeFile(macho_file);
const hdr: *const macho.mach_header_64 = @ptrCast(@alignCast(mapped_mem.ptr));
if (hdr.magic != macho.MH_MAGIC_64)
return error.InvalidDebugInfo;
var it = macho.LoadCommandIterator{
.ncmds = hdr.ncmds,
.buffer = mapped_mem[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
};
const symtab = while (it.next()) |cmd| switch (cmd.cmd()) {
.SYMTAB => break cmd.cast(macho.symtab_command).?,
else => {},
} else return error.MissingDebugInfo;
const syms = @as(
[*]const macho.nlist_64,
@ptrCast(@alignCast(&mapped_mem[symtab.symoff])),
)[0..symtab.nsyms];
const strings = mapped_mem[symtab.stroff..][0 .. symtab.strsize - 1 :0];
const symbols_buf = try allocator.alloc(MachoSymbol, syms.len);
var ofile: u32 = undefined;
var last_sym: MachoSymbol = undefined;
var symbol_index: usize = 0;
var state: enum {
init,
oso_open,
oso_close,
bnsym,
fun_strx,
fun_size,
ensym,
} = .init;
for (syms) |*sym| {
if (!sym.stab()) continue;
// TODO handle globals N_GSYM, and statics N_STSYM
switch (sym.n_type) {
macho.N_OSO => {
switch (state) {
.init, .oso_close => {
state = .oso_open;
ofile = sym.n_strx;
},
else => return error.InvalidDebugInfo,
}
},
macho.N_BNSYM => {
switch (state) {
.oso_open, .ensym => {
state = .bnsym;
last_sym = .{
.strx = 0,
.addr = sym.n_value,
.size = 0,
.ofile = ofile,
};
},
else => return error.InvalidDebugInfo,
}
},
macho.N_FUN => {
switch (state) {
.bnsym => {
state = .fun_strx;
last_sym.strx = sym.n_strx;
},
.fun_strx => {
state = .fun_size;
last_sym.size = @as(u32, @intCast(sym.n_value));
},
else => return error.InvalidDebugInfo,
}
},
macho.N_ENSYM => {
switch (state) {
.fun_size => {
state = .ensym;
symbols_buf[symbol_index] = last_sym;
symbol_index += 1;
},
else => return error.InvalidDebugInfo,
}
},
macho.N_SO => {
switch (state) {
.init, .oso_close => {},
.oso_open, .ensym => {
state = .oso_close;
},
else => return error.InvalidDebugInfo,
}
},
else => {},
}
}
switch (state) {
.init => return error.MissingDebugInfo,
.oso_close => {},
else => return error.InvalidDebugInfo,
}
const symbols = try allocator.realloc(symbols_buf, symbol_index);
// Even though lld emits symbols in ascending order, this debug code
// should work for programs linked in any valid way.
// This sort is so that we can binary search later.
mem.sort(MachoSymbol, symbols, {}, MachoSymbol.addressLessThan);
return ModuleDebugInfo{
.base_address = undefined,
.mapped_memory = mapped_mem,
.ofiles = ModuleDebugInfo.OFileTable.init(allocator),
.symbols = symbols,
.strings = strings,
};
}
fn printLineFromFileAnyOs(out_stream: anytype, line_info: LineInfo) !void {
// Need this to always block even in async I/O mode, because this could potentially
// be called from e.g. the event loop code crashing.
var f = try fs.cwd().openFile(line_info.file_name, .{ .intended_io_mode = .blocking });
defer f.close();
// TODO fstat and make sure that the file has the correct size
var buf: [mem.page_size]u8 = undefined;
var line: usize = 1;
var column: usize = 1;
while (true) {
const amt_read = try f.read(buf[0..]);
const slice = buf[0..amt_read];
for (slice) |byte| {
if (line == line_info.line) {
switch (byte) {
'\t' => try out_stream.writeByte(' '),
else => try out_stream.writeByte(byte),
}
if (byte == '\n') {
return;
}
}
if (byte == '\n') {
line += 1;
column = 1;
} else {
column += 1;
}
}
if (amt_read < buf.len) return error.EndOfFile;
}
}
const MachoSymbol = struct {
strx: u32,
addr: u64,
size: u32,
ofile: u32,
/// Returns the address from the macho file
fn address(self: MachoSymbol) u64 {
return self.addr;
}
fn addressLessThan(context: void, lhs: MachoSymbol, rhs: MachoSymbol) bool {
_ = context;
return lhs.addr < rhs.addr;
}
};
/// `file` is expected to have been opened with .intended_io_mode == .blocking.
/// Takes ownership of file, even on error.
/// TODO it's weird to take ownership even on error, rework this code.
fn mapWholeFile(file: File) ![]align(mem.page_size) const u8 {
nosuspend {
defer file.close();
const file_len = math.cast(usize, try file.getEndPos()) orelse math.maxInt(usize);
const mapped_mem = try os.mmap(
null,
file_len,
os.PROT.READ,
os.MAP.SHARED,
file.handle,
0,
);
errdefer os.munmap(mapped_mem);
return mapped_mem;
}
}
pub const WindowsModuleInfo = struct {
base_address: usize,
size: u32,
name: []const u8,
};
pub const DebugInfo = struct {
allocator: mem.Allocator,
address_map: std.AutoHashMap(usize, *ModuleDebugInfo),
modules: if (native_os == .windows) std.ArrayListUnmanaged(WindowsModuleInfo) else void,
pub fn init(allocator: mem.Allocator) !DebugInfo {
var debug_info = DebugInfo{
.allocator = allocator,
.address_map = std.AutoHashMap(usize, *ModuleDebugInfo).init(allocator),
.modules = if (native_os == .windows) .{} else {},
};
if (native_os == .windows) {
const handle = windows.kernel32.CreateToolhelp32Snapshot(windows.TH32CS_SNAPMODULE | windows.TH32CS_SNAPMODULE32, 0);
if (handle == windows.INVALID_HANDLE_VALUE) {
switch (windows.kernel32.GetLastError()) {
else => |err| return windows.unexpectedError(err),
}
}
defer windows.CloseHandle(handle);
var module_entry: windows.MODULEENTRY32 = undefined;
module_entry.dwSize = @sizeOf(windows.MODULEENTRY32);
if (windows.kernel32.Module32First(handle, &module_entry) == 0) {
return error.MissingDebugInfo;
}
var module_valid = true;
while (module_valid) {
const module_info = try debug_info.modules.addOne(allocator);
module_info.base_address = @intFromPtr(module_entry.modBaseAddr);
module_info.size = module_entry.modBaseSize;
module_info.name = allocator.dupe(u8, mem.sliceTo(&module_entry.szModule, 0)) catch &.{};
module_valid = windows.kernel32.Module32Next(handle, &module_entry) == 1;
}
}
return debug_info;
}
pub fn deinit(self: *DebugInfo) void {
var it = self.address_map.iterator();
while (it.next()) |entry| {
const mdi = entry.value_ptr.*;
mdi.deinit(self.allocator);
self.allocator.destroy(mdi);
}
self.address_map.deinit();
if (native_os == .windows) {
for (self.modules.items) |module| {
self.allocator.free(module.name);
}
self.modules.deinit(self.allocator);
}
}
pub fn getModuleForAddress(self: *DebugInfo, address: usize) !*ModuleDebugInfo {
if (comptime builtin.target.isDarwin()) {
return self.lookupModuleDyld(address);
} else if (native_os == .windows) {
return self.lookupModuleWin32(address);
} else if (native_os == .haiku) {
return self.lookupModuleHaiku(address);
} else if (comptime builtin.target.isWasm()) {
return self.lookupModuleWasm(address);
} else {
return self.lookupModuleDl(address);
}
}
pub fn getModuleNameForAddress(self: *DebugInfo, address: usize) ?[]const u8 {
if (comptime builtin.target.isDarwin()) {
return null;
} else if (native_os == .windows) {
return self.lookupModuleNameWin32(address);
} else if (native_os == .haiku) {
return null;
} else if (comptime builtin.target.isWasm()) {
return null;
} else {
return null;
}
}
fn lookupModuleDyld(self: *DebugInfo, address: usize) !*ModuleDebugInfo {
const image_count = std.c._dyld_image_count();
var i: u32 = 0;
while (i < image_count) : (i += 1) {
const base_address = std.c._dyld_get_image_vmaddr_slide(i);
if (address < base_address) continue;
const header = std.c._dyld_get_image_header(i) orelse continue;
var it = macho.LoadCommandIterator{
.ncmds = header.ncmds,
.buffer = @alignCast(@as(
[*]u8,
@ptrFromInt(@intFromPtr(header) + @sizeOf(macho.mach_header_64)),
)[0..header.sizeofcmds]),
};
while (it.next()) |cmd| switch (cmd.cmd()) {
.SEGMENT_64 => {
const segment_cmd = cmd.cast(macho.segment_command_64).?;
const rebased_address = address - base_address;
const seg_start = segment_cmd.vmaddr;
const seg_end = seg_start + segment_cmd.vmsize;
if (rebased_address >= seg_start and rebased_address < seg_end) {
if (self.address_map.get(base_address)) |obj_di| {
return obj_di;
}
const obj_di = try self.allocator.create(ModuleDebugInfo);
errdefer self.allocator.destroy(obj_di);
const macho_path = mem.sliceTo(std.c._dyld_get_image_name(i), 0);
const macho_file = fs.cwd().openFile(macho_path, .{
.intended_io_mode = .blocking,
}) catch |err| switch (err) {
error.FileNotFound => return error.MissingDebugInfo,
else => return err,
};
obj_di.* = try readMachODebugInfo(self.allocator, macho_file);
obj_di.base_address = base_address;
try self.address_map.putNoClobber(base_address, obj_di);
return obj_di;
}
},
else => {},
};
}
return error.MissingDebugInfo;
}
fn lookupModuleWin32(self: *DebugInfo, address: usize) !*ModuleDebugInfo {
for (self.modules.items) |module| {
if (address >= module.base_address and address < module.base_address + module.size) {
if (self.address_map.get(module.base_address)) |obj_di| {
return obj_di;
}
const mapped_module = @as([*]const u8, @ptrFromInt(module.base_address))[0..module.size];
const obj_di = try self.allocator.create(ModuleDebugInfo);
errdefer self.allocator.destroy(obj_di);
obj_di.* = try readCoffDebugInfo(self.allocator, mapped_module);
obj_di.base_address = module.base_address;
try self.address_map.putNoClobber(module.base_address, obj_di);
return obj_di;
}
}
return error.MissingDebugInfo;
}
fn lookupModuleNameWin32(self: *DebugInfo, address: usize) ?[]const u8 {
for (self.modules.items) |module| {
if (address >= module.base_address and address < module.base_address + module.size) {
return module.name;
}
}
return null;
}
fn lookupModuleDl(self: *DebugInfo, address: usize) !*ModuleDebugInfo {
var ctx: struct {
// Input
address: usize,
// Output
base_address: usize = undefined,
name: []const u8 = undefined,
} = .{ .address = address };
const CtxTy = @TypeOf(ctx);
if (os.dl_iterate_phdr(&ctx, error{Found}, struct {
fn callback(info: *os.dl_phdr_info, size: usize, context: *CtxTy) !void {
_ = size;
// The base address is too high
if (context.address < info.dlpi_addr)
return;
const phdrs = info.dlpi_phdr[0..info.dlpi_phnum];
for (phdrs) |*phdr| {
if (phdr.p_type != elf.PT_LOAD) continue;
const seg_start = info.dlpi_addr + phdr.p_vaddr;
const seg_end = seg_start + phdr.p_memsz;
if (context.address >= seg_start and context.address < seg_end) {
// Android libc uses NULL instead of an empty string to mark the
// main program
context.name = mem.sliceTo(info.dlpi_name, 0) orelse "";
context.base_address = info.dlpi_addr;
// Stop the iteration
return error.Found;
}
}
}
}.callback)) {
return error.MissingDebugInfo;
} else |err| switch (err) {
error.Found => {},
}
if (self.address_map.get(ctx.base_address)) |obj_di| {
return obj_di;
}
const obj_di = try self.allocator.create(ModuleDebugInfo);
errdefer self.allocator.destroy(obj_di);
// TODO https://github.com/ziglang/zig/issues/5525
const copy = if (ctx.name.len > 0)
fs.cwd().openFile(ctx.name, .{ .intended_io_mode = .blocking })
else
fs.openSelfExe(.{ .intended_io_mode = .blocking });
const elf_file = copy catch |err| switch (err) {
error.FileNotFound => return error.MissingDebugInfo,
else => return err,
};
obj_di.* = try readElfDebugInfo(self.allocator, elf_file);
obj_di.base_address = ctx.base_address;
try self.address_map.putNoClobber(ctx.base_address, obj_di);
return obj_di;
}
fn lookupModuleHaiku(self: *DebugInfo, address: usize) !*ModuleDebugInfo {
_ = self;
_ = address;
@panic("TODO implement lookup module for Haiku");
}
fn lookupModuleWasm(self: *DebugInfo, address: usize) !*ModuleDebugInfo {
_ = self;
_ = address;
@panic("TODO implement lookup module for Wasm");
}
};
pub const ModuleDebugInfo = switch (native_os) {
.macos, .ios, .watchos, .tvos => struct {
base_address: usize,
mapped_memory: []align(mem.page_size) const u8,
symbols: []const MachoSymbol,
strings: [:0]const u8,
ofiles: OFileTable,
const OFileTable = std.StringHashMap(OFileInfo);
const OFileInfo = struct {
di: DW.DwarfInfo,
addr_table: std.StringHashMap(u64),
};
fn deinit(self: *@This(), allocator: mem.Allocator) void {
var it = self.ofiles.iterator();
while (it.next()) |entry| {
const ofile = entry.value_ptr;
ofile.di.deinit(allocator);
ofile.addr_table.deinit();
}
self.ofiles.deinit();
allocator.free(self.symbols);
os.munmap(self.mapped_memory);
}
fn loadOFile(self: *@This(), allocator: mem.Allocator, o_file_path: []const u8) !OFileInfo {
const o_file = try fs.cwd().openFile(o_file_path, .{ .intended_io_mode = .blocking });
const mapped_mem = try mapWholeFile(o_file);
const hdr: *const macho.mach_header_64 = @ptrCast(@alignCast(mapped_mem.ptr));
if (hdr.magic != std.macho.MH_MAGIC_64)
return error.InvalidDebugInfo;
var segcmd: ?macho.LoadCommandIterator.LoadCommand = null;
var symtabcmd: ?macho.symtab_command = null;
var it = macho.LoadCommandIterator{
.ncmds = hdr.ncmds,
.buffer = mapped_mem[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
};
while (it.next()) |cmd| switch (cmd.cmd()) {
.SEGMENT_64 => segcmd = cmd,
.SYMTAB => symtabcmd = cmd.cast(macho.symtab_command).?,
else => {},
};
if (segcmd == null or symtabcmd == null) return error.MissingDebugInfo;
// Parse symbols
const strtab = @as(
[*]const u8,
@ptrCast(&mapped_mem[symtabcmd.?.stroff]),
)[0 .. symtabcmd.?.strsize - 1 :0];
const symtab = @as(
[*]const macho.nlist_64,
@ptrCast(@alignCast(&mapped_mem[symtabcmd.?.symoff])),
)[0..symtabcmd.?.nsyms];
// TODO handle tentative (common) symbols
var addr_table = std.StringHashMap(u64).init(allocator);
try addr_table.ensureTotalCapacity(@as(u32, @intCast(symtab.len)));
for (symtab) |sym| {
if (sym.n_strx == 0) continue;
if (sym.undf() or sym.tentative() or sym.abs()) continue;
const sym_name = mem.sliceTo(strtab[sym.n_strx..], 0);
// TODO is it possible to have a symbol collision?
addr_table.putAssumeCapacityNoClobber(sym_name, sym.n_value);
}
var opt_debug_line: ?macho.section_64 = null;
var opt_debug_info: ?macho.section_64 = null;
var opt_debug_abbrev: ?macho.section_64 = null;
var opt_debug_str: ?macho.section_64 = null;
var opt_debug_str_offsets: ?macho.section_64 = null;
var opt_debug_line_str: ?macho.section_64 = null;
var opt_debug_ranges: ?macho.section_64 = null;
var opt_debug_loclists: ?macho.section_64 = null;
var opt_debug_rnglists: ?macho.section_64 = null;
var opt_debug_addr: ?macho.section_64 = null;
var opt_debug_names: ?macho.section_64 = null;
var opt_debug_frame: ?macho.section_64 = null;
for (segcmd.?.getSections()) |sect| {
const name = sect.sectName();
if (mem.eql(u8, name, "__debug_line")) {
opt_debug_line = sect;
} else if (mem.eql(u8, name, "__debug_info")) {
opt_debug_info = sect;
} else if (mem.eql(u8, name, "__debug_abbrev")) {
opt_debug_abbrev = sect;
} else if (mem.eql(u8, name, "__debug_str")) {
opt_debug_str = sect;
} else if (mem.eql(u8, name, "__debug_str_offsets")) {
opt_debug_str_offsets = sect;
} else if (mem.eql(u8, name, "__debug_line_str")) {
opt_debug_line_str = sect;
} else if (mem.eql(u8, name, "__debug_ranges")) {
opt_debug_ranges = sect;
} else if (mem.eql(u8, name, "__debug_loclists")) {
opt_debug_loclists = sect;
} else if (mem.eql(u8, name, "__debug_rnglists")) {
opt_debug_rnglists = sect;
} else if (mem.eql(u8, name, "__debug_addr")) {
opt_debug_addr = sect;
} else if (mem.eql(u8, name, "__debug_names")) {
opt_debug_names = sect;
} else if (mem.eql(u8, name, "__debug_frame")) {
opt_debug_frame = sect;
}
}
const debug_line = opt_debug_line orelse
return error.MissingDebugInfo;
const debug_info = opt_debug_info orelse
return error.MissingDebugInfo;
const debug_str = opt_debug_str orelse
return error.MissingDebugInfo;
const debug_abbrev = opt_debug_abbrev orelse
return error.MissingDebugInfo;
var di = DW.DwarfInfo{
.endian = .Little,
.debug_info = try chopSlice(mapped_mem, debug_info.offset, debug_info.size),
.debug_abbrev = try chopSlice(mapped_mem, debug_abbrev.offset, debug_abbrev.size),
.debug_str = try chopSlice(mapped_mem, debug_str.offset, debug_str.size),
.debug_str_offsets = if (opt_debug_str_offsets) |debug_str_offsets|
try chopSlice(mapped_mem, debug_str_offsets.offset, debug_str_offsets.size)
else
null,
.debug_line = try chopSlice(mapped_mem, debug_line.offset, debug_line.size),
.debug_line_str = if (opt_debug_line_str) |debug_line_str|
try chopSlice(mapped_mem, debug_line_str.offset, debug_line_str.size)
else
null,
.debug_ranges = if (opt_debug_ranges) |debug_ranges|
try chopSlice(mapped_mem, debug_ranges.offset, debug_ranges.size)
else
null,
.debug_loclists = if (opt_debug_loclists) |debug_loclists|
try chopSlice(mapped_mem, debug_loclists.offset, debug_loclists.size)
else
null,
.debug_rnglists = if (opt_debug_rnglists) |debug_rnglists|
try chopSlice(mapped_mem, debug_rnglists.offset, debug_rnglists.size)
else
null,
.debug_addr = if (opt_debug_addr) |debug_addr|
try chopSlice(mapped_mem, debug_addr.offset, debug_addr.size)
else
null,
.debug_names = if (opt_debug_names) |debug_names|
try chopSlice(mapped_mem, debug_names.offset, debug_names.size)
else
null,
.debug_frame = if (opt_debug_frame) |debug_frame|
try chopSlice(mapped_mem, debug_frame.offset, debug_frame.size)
else
null,
};
try DW.openDwarfDebugInfo(&di, allocator);
var info = OFileInfo{
.di = di,
.addr_table = addr_table,
};
// Add the debug info to the cache
try self.ofiles.putNoClobber(o_file_path, info);
return info;
}
pub fn getSymbolAtAddress(self: *@This(), allocator: mem.Allocator, address: usize) !SymbolInfo {
nosuspend {
// Translate the VA into an address into this object
const relocated_address = address - self.base_address;
// Find the .o file where this symbol is defined
const symbol = machoSearchSymbols(self.symbols, relocated_address) orelse
return SymbolInfo{};
const addr_off = relocated_address - symbol.addr;
// Take the symbol name from the N_FUN STAB entry, we're going to
// use it if we fail to find the DWARF infos
const stab_symbol = mem.sliceTo(self.strings[symbol.strx..], 0);
const o_file_path = mem.sliceTo(self.strings[symbol.ofile..], 0);
// Check if its debug infos are already in the cache
var o_file_info = self.ofiles.get(o_file_path) orelse
(self.loadOFile(allocator, o_file_path) catch |err| switch (err) {
error.FileNotFound,
error.MissingDebugInfo,
error.InvalidDebugInfo,
=> {
return SymbolInfo{ .symbol_name = stab_symbol };
},
else => return err,
});
const o_file_di = &o_file_info.di;
// Translate again the address, this time into an address inside the
// .o file
const relocated_address_o = o_file_info.addr_table.get(stab_symbol) orelse return SymbolInfo{
.symbol_name = "???",
};
if (o_file_di.findCompileUnit(relocated_address_o)) |compile_unit| {
return SymbolInfo{
.symbol_name = o_file_di.getSymbolName(relocated_address_o) orelse "???",
.compile_unit_name = compile_unit.die.getAttrString(
o_file_di,
DW.AT.name,
o_file_di.debug_str,
compile_unit.*,
) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => "???",
},
.line_info = o_file_di.getLineNumberInfo(
allocator,
compile_unit.*,
relocated_address_o + addr_off,
) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => null,
else => return err,
},
};
} else |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => {
return SymbolInfo{ .symbol_name = stab_symbol };
},
else => return err,
}
unreachable;
}
}
},
.uefi, .windows => struct {
base_address: usize,
debug_data: PdbOrDwarf,
coff_image_base: u64,
coff_section_headers: []coff.SectionHeader,
fn deinit(self: *@This(), allocator: mem.Allocator) void {
switch (self.debug_data) {
.dwarf => |*dwarf| {
allocator.free(dwarf.debug_info);
allocator.free(dwarf.debug_abbrev);
allocator.free(dwarf.debug_str);
allocator.free(dwarf.debug_line);
if (dwarf.debug_str_offsets) |d| allocator.free(d);
if (dwarf.debug_line_str) |d| allocator.free(d);
if (dwarf.debug_ranges) |d| allocator.free(d);
if (dwarf.debug_loclists) |d| allocator.free(d);
if (dwarf.debug_rnglists) |d| allocator.free(d);
if (dwarf.debug_addr) |d| allocator.free(d);
if (dwarf.debug_names) |d| allocator.free(d);
if (dwarf.debug_frame) |d| allocator.free(d);
},
.pdb => {
allocator.free(self.coff_section_headers);
},
}
self.debug_data.deinit(allocator);
}
pub fn getSymbolAtAddress(self: *@This(), allocator: mem.Allocator, address: usize) !SymbolInfo {
// Translate the VA into an address into this object
const relocated_address = address - self.base_address;
switch (self.debug_data) {
.dwarf => |*dwarf| {
const dwarf_address = relocated_address + self.coff_image_base;
return getSymbolFromDwarf(allocator, dwarf_address, dwarf);
},
.pdb => {
// fallthrough to pdb handling
},
}
var coff_section: *align(1) const coff.SectionHeader = undefined;
const mod_index = for (self.debug_data.pdb.sect_contribs) |sect_contrib| {
if (sect_contrib.Section > self.coff_section_headers.len) continue;
// Remember that SectionContribEntry.Section is 1-based.
coff_section = &self.coff_section_headers[sect_contrib.Section - 1];
const vaddr_start = coff_section.virtual_address + sect_contrib.Offset;
const vaddr_end = vaddr_start + sect_contrib.Size;
if (relocated_address >= vaddr_start and relocated_address < vaddr_end) {
break sect_contrib.ModuleIndex;
}
} else {
// we have no information to add to the address
return SymbolInfo{};
};
const module = (try self.debug_data.pdb.getModule(mod_index)) orelse
return error.InvalidDebugInfo;
const obj_basename = fs.path.basename(module.obj_file_name);
const symbol_name = self.debug_data.pdb.getSymbolName(
module,
relocated_address - coff_section.virtual_address,
) orelse "???";
const opt_line_info = try self.debug_data.pdb.getLineNumberInfo(
module,
relocated_address - coff_section.virtual_address,
);
return SymbolInfo{
.symbol_name = symbol_name,
.compile_unit_name = obj_basename,
.line_info = opt_line_info,
};
}
},
.linux, .netbsd, .freebsd, .dragonfly, .openbsd, .haiku, .solaris => struct {
base_address: usize,
dwarf: DW.DwarfInfo,
mapped_memory: []align(mem.page_size) const u8,
fn deinit(self: *@This(), allocator: mem.Allocator) void {
self.dwarf.deinit(allocator);
os.munmap(self.mapped_memory);
}
pub fn getSymbolAtAddress(self: *@This(), allocator: mem.Allocator, address: usize) !SymbolInfo {
// Translate the VA into an address into this object
const relocated_address = address - self.base_address;
return getSymbolFromDwarf(allocator, relocated_address, &self.dwarf);
}
},
.wasi => struct {
fn deinit(self: *@This(), allocator: mem.Allocator) void {
_ = self;
_ = allocator;
}
pub fn getSymbolAtAddress(self: *@This(), allocator: mem.Allocator, address: usize) !SymbolInfo {
_ = self;
_ = allocator;
_ = address;
return SymbolInfo{};
}
},
else => DW.DwarfInfo,
};
fn getSymbolFromDwarf(allocator: mem.Allocator, address: u64, di: *DW.DwarfInfo) !SymbolInfo {
if (nosuspend di.findCompileUnit(address)) |compile_unit| {
return SymbolInfo{
.symbol_name = nosuspend di.getSymbolName(address) orelse "???",
.compile_unit_name = compile_unit.die.getAttrString(di, DW.AT.name, di.debug_str, compile_unit.*) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => "???",
},
.line_info = nosuspend di.getLineNumberInfo(allocator, compile_unit.*, address) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => null,
else => return err,
},
};
} else |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => {
return SymbolInfo{};
},
else => return err,
}
}
/// TODO multithreaded awareness
var debug_info_allocator: ?mem.Allocator = null;
var debug_info_arena_allocator: std.heap.ArenaAllocator = undefined;
fn getDebugInfoAllocator() mem.Allocator {
if (debug_info_allocator) |a| return a;
debug_info_arena_allocator = std.heap.ArenaAllocator.init(std.heap.page_allocator);
const allocator = debug_info_arena_allocator.allocator();
debug_info_allocator = allocator;
return allocator;
}
/// Whether or not the current target can print useful debug information when a segfault occurs.
pub const have_segfault_handling_support = switch (native_os) {
.linux,
.macos,
.netbsd,
.solaris,
.windows,
=> true,
.freebsd, .openbsd => @hasDecl(os.system, "ucontext_t"),
else => false,
};
const enable_segfault_handler = std.options.enable_segfault_handler;
pub const default_enable_segfault_handler = runtime_safety and have_segfault_handling_support;
pub fn maybeEnableSegfaultHandler() void {
if (enable_segfault_handler) {
std.debug.attachSegfaultHandler();
}
}
var windows_segfault_handle: ?windows.HANDLE = null;
pub fn updateSegfaultHandler(act: ?*const os.Sigaction) error{OperationNotSupported}!void {
try os.sigaction(os.SIG.SEGV, act, null);
try os.sigaction(os.SIG.ILL, act, null);
try os.sigaction(os.SIG.BUS, act, null);
try os.sigaction(os.SIG.FPE, act, null);
}
/// Attaches a global SIGSEGV handler which calls @panic("segmentation fault");
pub fn attachSegfaultHandler() void {
if (!have_segfault_handling_support) {
@compileError("segfault handler not supported for this target");
}
if (native_os == .windows) {
windows_segfault_handle = windows.kernel32.AddVectoredExceptionHandler(0, handleSegfaultWindows);
return;
}
var act = os.Sigaction{
.handler = .{ .sigaction = handleSegfaultPosix },
.mask = os.empty_sigset,
.flags = (os.SA.SIGINFO | os.SA.RESTART | os.SA.RESETHAND),
};
updateSegfaultHandler(&act) catch {
@panic("unable to install segfault handler, maybe adjust have_segfault_handling_support in std/debug.zig");
};
}
fn resetSegfaultHandler() void {
if (native_os == .windows) {
if (windows_segfault_handle) |handle| {
assert(windows.kernel32.RemoveVectoredExceptionHandler(handle) != 0);
windows_segfault_handle = null;
}
return;
}
var act = os.Sigaction{
.handler = .{ .handler = os.SIG.DFL },
.mask = os.empty_sigset,
.flags = 0,
};
// To avoid a double-panic, do nothing if an error happens here.
updateSegfaultHandler(&act) catch {};
}
fn handleSegfaultPosix(sig: i32, info: *const os.siginfo_t, ctx_ptr: ?*const anyopaque) callconv(.C) noreturn {
// Reset to the default handler so that if a segfault happens in this handler it will crash
// the process. Also when this handler returns, the original instruction will be repeated
// and the resulting segfault will crash the process rather than continually dump stack traces.
resetSegfaultHandler();
const addr = switch (native_os) {
.linux => @intFromPtr(info.fields.sigfault.addr),
.freebsd, .macos => @intFromPtr(info.addr),
.netbsd => @intFromPtr(info.info.reason.fault.addr),
.openbsd => @intFromPtr(info.data.fault.addr),
.solaris => @intFromPtr(info.reason.fault.addr),
else => unreachable,
};
nosuspend switch (panic_stage) {
0 => {
panic_stage = 1;
_ = panicking.fetchAdd(1, .SeqCst);
{
panic_mutex.lock();
defer panic_mutex.unlock();
dumpSegfaultInfoPosix(sig, addr, ctx_ptr);
}
waitForOtherThreadToFinishPanicking();
},
else => {
// panic mutex already locked
dumpSegfaultInfoPosix(sig, addr, ctx_ptr);
},
};
// We cannot allow the signal handler to return because when it runs the original instruction
// again, the memory may be mapped and undefined behavior would occur rather than repeating
// the segfault. So we simply abort here.
os.abort();
}
fn dumpSegfaultInfoPosix(sig: i32, addr: usize, ctx_ptr: ?*const anyopaque) void {
const stderr = io.getStdErr().writer();
_ = switch (sig) {
os.SIG.SEGV => stderr.print("Segmentation fault at address 0x{x}\n", .{addr}),
os.SIG.ILL => stderr.print("Illegal instruction at address 0x{x}\n", .{addr}),
os.SIG.BUS => stderr.print("Bus error at address 0x{x}\n", .{addr}),
os.SIG.FPE => stderr.print("Arithmetic exception at address 0x{x}\n", .{addr}),
else => unreachable,
} catch os.abort();
switch (native_arch) {
.x86 => {
const ctx: *const os.ucontext_t = @ptrCast(@alignCast(ctx_ptr));
const ip = @as(usize, @intCast(ctx.mcontext.gregs[os.REG.EIP]));
const bp = @as(usize, @intCast(ctx.mcontext.gregs[os.REG.EBP]));
dumpStackTraceFromBase(bp, ip);
},
.x86_64 => {
const ctx: *const os.ucontext_t = @ptrCast(@alignCast(ctx_ptr));
const ip = switch (native_os) {
.linux, .netbsd, .solaris => @as(usize, @intCast(ctx.mcontext.gregs[os.REG.RIP])),
.freebsd => @as(usize, @intCast(ctx.mcontext.rip)),
.openbsd => @as(usize, @intCast(ctx.sc_rip)),
.macos => @as(usize, @intCast(ctx.mcontext.ss.rip)),
else => unreachable,
};
const bp = switch (native_os) {
.linux, .netbsd, .solaris => @as(usize, @intCast(ctx.mcontext.gregs[os.REG.RBP])),
.openbsd => @as(usize, @intCast(ctx.sc_rbp)),
.freebsd => @as(usize, @intCast(ctx.mcontext.rbp)),
.macos => @as(usize, @intCast(ctx.mcontext.ss.rbp)),
else => unreachable,
};
dumpStackTraceFromBase(bp, ip);
},
.arm => {
const ctx: *const os.ucontext_t = @ptrCast(@alignCast(ctx_ptr));
const ip = @as(usize, @intCast(ctx.mcontext.arm_pc));
const bp = @as(usize, @intCast(ctx.mcontext.arm_fp));
dumpStackTraceFromBase(bp, ip);
},
.aarch64 => {
const ctx: *const os.ucontext_t = @ptrCast(@alignCast(ctx_ptr));
const ip = switch (native_os) {
.macos => @as(usize, @intCast(ctx.mcontext.ss.pc)),
.netbsd => @as(usize, @intCast(ctx.mcontext.gregs[os.REG.PC])),
.freebsd => @as(usize, @intCast(ctx.mcontext.gpregs.elr)),
else => @as(usize, @intCast(ctx.mcontext.pc)),
};
// x29 is the ABI-designated frame pointer
const bp = switch (native_os) {
.macos => @as(usize, @intCast(ctx.mcontext.ss.fp)),
.netbsd => @as(usize, @intCast(ctx.mcontext.gregs[os.REG.FP])),
.freebsd => @as(usize, @intCast(ctx.mcontext.gpregs.x[os.REG.FP])),
else => @as(usize, @intCast(ctx.mcontext.regs[29])),
};
dumpStackTraceFromBase(bp, ip);
},
else => {},
}
}
fn handleSegfaultWindows(info: *windows.EXCEPTION_POINTERS) callconv(windows.WINAPI) c_long {
switch (info.ExceptionRecord.ExceptionCode) {
windows.EXCEPTION_DATATYPE_MISALIGNMENT => handleSegfaultWindowsExtra(info, 0, "Unaligned Memory Access"),
windows.EXCEPTION_ACCESS_VIOLATION => handleSegfaultWindowsExtra(info, 1, null),
windows.EXCEPTION_ILLEGAL_INSTRUCTION => handleSegfaultWindowsExtra(info, 2, null),
windows.EXCEPTION_STACK_OVERFLOW => handleSegfaultWindowsExtra(info, 0, "Stack Overflow"),
else => return windows.EXCEPTION_CONTINUE_SEARCH,
}
}
fn handleSegfaultWindowsExtra(
info: *windows.EXCEPTION_POINTERS,
msg: u8,
label: ?[]const u8,
) noreturn {
const exception_address = @intFromPtr(info.ExceptionRecord.ExceptionAddress);
if (@hasDecl(windows, "CONTEXT")) {
nosuspend switch (panic_stage) {
0 => {
panic_stage = 1;
_ = panicking.fetchAdd(1, .SeqCst);
{
panic_mutex.lock();
defer panic_mutex.unlock();
dumpSegfaultInfoWindows(info, msg, label);
}
waitForOtherThreadToFinishPanicking();
},
else => {
// panic mutex already locked
dumpSegfaultInfoWindows(info, msg, label);
},
};
os.abort();
} else {
switch (msg) {
0 => panicImpl(null, exception_address, "{s}", label.?),
1 => {
const format_item = "Segmentation fault at address 0x{x}";
var buf: [format_item.len + 64]u8 = undefined; // 64 is arbitrary, but sufficiently large
const to_print = std.fmt.bufPrint(buf[0..buf.len], format_item, .{info.ExceptionRecord.ExceptionInformation[1]}) catch unreachable;
panicImpl(null, exception_address, to_print);
},
2 => panicImpl(null, exception_address, "Illegal Instruction"),
else => unreachable,
}
}
}
fn dumpSegfaultInfoWindows(info: *windows.EXCEPTION_POINTERS, msg: u8, label: ?[]const u8) void {
const regs = info.ContextRecord.getRegs();
const stderr = io.getStdErr().writer();
_ = switch (msg) {
0 => stderr.print("{s}\n", .{label.?}),
1 => stderr.print("Segmentation fault at address 0x{x}\n", .{info.ExceptionRecord.ExceptionInformation[1]}),
2 => stderr.print("Illegal instruction at address 0x{x}\n", .{regs.ip}),
else => unreachable,
} catch os.abort();
dumpStackTraceFromBase(regs.bp, regs.ip);
}
pub fn dumpStackPointerAddr(prefix: []const u8) void {
const sp = asm (""
: [argc] "={rsp}" (-> usize),
);
std.debug.print("{} sp = 0x{x}\n", .{ prefix, sp });
}
test "manage resources correctly" {
if (builtin.os.tag == .wasi) return error.SkipZigTest;
if (builtin.os.tag == .windows) {
// https://github.com/ziglang/zig/issues/13963
return error.SkipZigTest;
}
const writer = std.io.null_writer;
var di = try openSelfDebugInfo(testing.allocator);
defer di.deinit();
try printSourceAtAddress(&di, writer, showMyTrace(), io.tty.detectConfig(std.io.getStdErr()));
}
noinline fn showMyTrace() usize {
return @returnAddress();
}
/// This API helps you track where a value originated and where it was mutated,
/// or any other points of interest.
/// In debug mode, it adds a small size penalty (104 bytes on 64-bit architectures)
/// to the aggregate that you add it to.
/// In release mode, it is size 0 and all methods are no-ops.
/// This is a pre-made type with default settings.
/// For more advanced usage, see `ConfigurableTrace`.
pub const Trace = ConfigurableTrace(2, 4, builtin.mode == .Debug);
pub fn ConfigurableTrace(comptime size: usize, comptime stack_frame_count: usize, comptime is_enabled: bool) type {
return struct {
addrs: [actual_size][stack_frame_count]usize = undefined,
notes: [actual_size][]const u8 = undefined,
index: Index = 0,
const actual_size = if (enabled) size else 0;
const Index = if (enabled) usize else u0;
pub const enabled = is_enabled;
pub const add = if (enabled) addNoInline else addNoOp;
pub noinline fn addNoInline(t: *@This(), note: []const u8) void {
comptime assert(enabled);
return addAddr(t, @returnAddress(), note);
}
pub inline fn addNoOp(t: *@This(), note: []const u8) void {
_ = t;
_ = note;
comptime assert(!enabled);
}
pub fn addAddr(t: *@This(), addr: usize, note: []const u8) void {
if (!enabled) return;
if (t.index < size) {
t.notes[t.index] = note;
t.addrs[t.index] = [1]usize{0} ** stack_frame_count;
var stack_trace: std.builtin.StackTrace = .{
.index = 0,
.instruction_addresses = &t.addrs[t.index],
};
captureStackTrace(addr, &stack_trace);
}
// Keep counting even if the end is reached so that the
// user can find out how much more size they need.
t.index += 1;
}
pub fn dump(t: @This()) void {
if (!enabled) return;
const tty_config = io.tty.detectConfig(std.io.getStdErr());
const stderr = io.getStdErr().writer();
const end = @min(t.index, size);
const debug_info = getSelfDebugInfo() catch |err| {
stderr.print(
"Unable to dump stack trace: Unable to open debug info: {s}\n",
.{@errorName(err)},
) catch return;
return;
};
for (t.addrs[0..end], 0..) |frames_array, i| {
stderr.print("{s}:\n", .{t.notes[i]}) catch return;
var frames_array_mutable = frames_array;
const frames = mem.sliceTo(frames_array_mutable[0..], 0);
const stack_trace: std.builtin.StackTrace = .{
.index = frames.len,
.instruction_addresses = frames,
};
writeStackTrace(stack_trace, stderr, getDebugInfoAllocator(), debug_info, tty_config) catch continue;
}
if (t.index > end) {
stderr.print("{d} more traces not shown; consider increasing trace size\n", .{
t.index - end,
}) catch return;
}
}
pub fn format(
t: Trace,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
if (fmt.len != 0) std.fmt.invalidFmtError(fmt, t);
_ = options;
if (enabled) {
try writer.writeAll("\n");
t.dump();
try writer.writeAll("\n");
} else {
return writer.writeAll("(value tracing disabled)");
}
}
};
}