zig/lib/std/dynamic_library.zig
mlugg f26dda2117 all: migrate code to new cast builtin syntax
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:

* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00

404 lines
14 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const mem = std.mem;
const os = std.os;
const assert = std.debug.assert;
const testing = std.testing;
const elf = std.elf;
const windows = std.os.windows;
const system = std.os.system;
const maxInt = std.math.maxInt;
pub const DynLib = switch (builtin.os.tag) {
.linux => if (builtin.link_libc) DlDynlib else ElfDynLib,
.windows => WindowsDynLib,
.macos, .tvos, .watchos, .ios, .freebsd, .netbsd, .openbsd, .dragonfly, .solaris => DlDynlib,
else => void,
};
// The link_map structure is not completely specified beside the fields
// reported below, any libc is free to store additional data in the remaining
// space.
// An iterator is provided in order to traverse the linked list in a idiomatic
// fashion.
const LinkMap = extern struct {
l_addr: usize,
l_name: [*:0]const u8,
l_ld: ?*elf.Dyn,
l_next: ?*LinkMap,
l_prev: ?*LinkMap,
pub const Iterator = struct {
current: ?*LinkMap,
pub fn end(self: *Iterator) bool {
return self.current == null;
}
pub fn next(self: *Iterator) ?*LinkMap {
if (self.current) |it| {
self.current = it.l_next;
return it;
}
return null;
}
};
};
const RDebug = extern struct {
r_version: i32,
r_map: ?*LinkMap,
r_brk: usize,
r_ldbase: usize,
};
/// TODO make it possible to reference this same external symbol 2x so we don't need this
/// helper function.
pub fn get_DYNAMIC() ?[*]elf.Dyn {
return @extern([*]elf.Dyn, .{ .name = "_DYNAMIC", .linkage = .Weak });
}
pub fn linkmap_iterator(phdrs: []elf.Phdr) !LinkMap.Iterator {
_ = phdrs;
const _DYNAMIC = get_DYNAMIC() orelse {
// No PT_DYNAMIC means this is either a statically-linked program or a
// badly corrupted dynamically-linked one.
return LinkMap.Iterator{ .current = null };
};
const link_map_ptr = init: {
var i: usize = 0;
while (_DYNAMIC[i].d_tag != elf.DT_NULL) : (i += 1) {
switch (_DYNAMIC[i].d_tag) {
elf.DT_DEBUG => {
const ptr = @as(?*RDebug, @ptrFromInt(_DYNAMIC[i].d_val));
if (ptr) |r_debug| {
if (r_debug.r_version != 1) return error.InvalidExe;
break :init r_debug.r_map;
}
},
elf.DT_PLTGOT => {
const ptr = @as(?[*]usize, @ptrFromInt(_DYNAMIC[i].d_val));
if (ptr) |got_table| {
// The address to the link_map structure is stored in
// the second slot
break :init @as(?*LinkMap, @ptrFromInt(got_table[1]));
}
},
else => {},
}
}
return LinkMap.Iterator{ .current = null };
};
return LinkMap.Iterator{ .current = link_map_ptr };
}
pub const ElfDynLib = struct {
strings: [*:0]u8,
syms: [*]elf.Sym,
hashtab: [*]os.Elf_Symndx,
versym: ?[*]u16,
verdef: ?*elf.Verdef,
memory: []align(mem.page_size) u8,
pub const Error = error{
FileTooBig,
NotElfFile,
NotDynamicLibrary,
MissingDynamicLinkingInformation,
ElfStringSectionNotFound,
ElfSymSectionNotFound,
ElfHashTableNotFound,
};
/// Trusts the file. Malicious file will be able to execute arbitrary code.
pub fn open(path: []const u8) !ElfDynLib {
const fd = try os.open(path, 0, os.O.RDONLY | os.O.CLOEXEC);
defer os.close(fd);
const stat = try os.fstat(fd);
const size = std.math.cast(usize, stat.size) orelse return error.FileTooBig;
// This one is to read the ELF info. We do more mmapping later
// corresponding to the actual LOAD sections.
const file_bytes = try os.mmap(
null,
mem.alignForward(usize, size, mem.page_size),
os.PROT.READ,
os.MAP.PRIVATE,
fd,
0,
);
defer os.munmap(file_bytes);
const eh = @as(*elf.Ehdr, @ptrCast(file_bytes.ptr));
if (!mem.eql(u8, eh.e_ident[0..4], elf.MAGIC)) return error.NotElfFile;
if (eh.e_type != elf.ET.DYN) return error.NotDynamicLibrary;
const elf_addr = @intFromPtr(file_bytes.ptr);
// Iterate over the program header entries to find out the
// dynamic vector as well as the total size of the virtual memory.
var maybe_dynv: ?[*]usize = null;
var virt_addr_end: usize = 0;
{
var i: usize = 0;
var ph_addr: usize = elf_addr + eh.e_phoff;
while (i < eh.e_phnum) : ({
i += 1;
ph_addr += eh.e_phentsize;
}) {
const ph = @as(*elf.Phdr, @ptrFromInt(ph_addr));
switch (ph.p_type) {
elf.PT_LOAD => virt_addr_end = @max(virt_addr_end, ph.p_vaddr + ph.p_memsz),
elf.PT_DYNAMIC => maybe_dynv = @as([*]usize, @ptrFromInt(elf_addr + ph.p_offset)),
else => {},
}
}
}
const dynv = maybe_dynv orelse return error.MissingDynamicLinkingInformation;
// Reserve the entire range (with no permissions) so that we can do MAP.FIXED below.
const all_loaded_mem = try os.mmap(
null,
virt_addr_end,
os.PROT.NONE,
os.MAP.PRIVATE | os.MAP.ANONYMOUS,
-1,
0,
);
errdefer os.munmap(all_loaded_mem);
const base = @intFromPtr(all_loaded_mem.ptr);
// Now iterate again and actually load all the program sections.
{
var i: usize = 0;
var ph_addr: usize = elf_addr + eh.e_phoff;
while (i < eh.e_phnum) : ({
i += 1;
ph_addr += eh.e_phentsize;
}) {
const ph = @as(*elf.Phdr, @ptrFromInt(ph_addr));
switch (ph.p_type) {
elf.PT_LOAD => {
// The VirtAddr may not be page-aligned; in such case there will be
// extra nonsense mapped before/after the VirtAddr,MemSiz
const aligned_addr = (base + ph.p_vaddr) & ~(@as(usize, mem.page_size) - 1);
const extra_bytes = (base + ph.p_vaddr) - aligned_addr;
const extended_memsz = mem.alignForward(usize, ph.p_memsz + extra_bytes, mem.page_size);
const ptr = @as([*]align(mem.page_size) u8, @ptrFromInt(aligned_addr));
const prot = elfToMmapProt(ph.p_flags);
if ((ph.p_flags & elf.PF_W) == 0) {
// If it does not need write access, it can be mapped from the fd.
_ = try os.mmap(
ptr,
extended_memsz,
prot,
os.MAP.PRIVATE | os.MAP.FIXED,
fd,
ph.p_offset - extra_bytes,
);
} else {
const sect_mem = try os.mmap(
ptr,
extended_memsz,
prot,
os.MAP.PRIVATE | os.MAP.FIXED | os.MAP.ANONYMOUS,
-1,
0,
);
@memcpy(sect_mem[0..ph.p_filesz], file_bytes[0..ph.p_filesz]);
}
},
else => {},
}
}
}
var maybe_strings: ?[*:0]u8 = null;
var maybe_syms: ?[*]elf.Sym = null;
var maybe_hashtab: ?[*]os.Elf_Symndx = null;
var maybe_versym: ?[*]u16 = null;
var maybe_verdef: ?*elf.Verdef = null;
{
var i: usize = 0;
while (dynv[i] != 0) : (i += 2) {
const p = base + dynv[i + 1];
switch (dynv[i]) {
elf.DT_STRTAB => maybe_strings = @as([*:0]u8, @ptrFromInt(p)),
elf.DT_SYMTAB => maybe_syms = @as([*]elf.Sym, @ptrFromInt(p)),
elf.DT_HASH => maybe_hashtab = @as([*]os.Elf_Symndx, @ptrFromInt(p)),
elf.DT_VERSYM => maybe_versym = @as([*]u16, @ptrFromInt(p)),
elf.DT_VERDEF => maybe_verdef = @as(*elf.Verdef, @ptrFromInt(p)),
else => {},
}
}
}
return ElfDynLib{
.memory = all_loaded_mem,
.strings = maybe_strings orelse return error.ElfStringSectionNotFound,
.syms = maybe_syms orelse return error.ElfSymSectionNotFound,
.hashtab = maybe_hashtab orelse return error.ElfHashTableNotFound,
.versym = maybe_versym,
.verdef = maybe_verdef,
};
}
/// Trusts the file. Malicious file will be able to execute arbitrary code.
pub fn openZ(path_c: [*:0]const u8) !ElfDynLib {
return open(mem.sliceTo(path_c, 0));
}
/// Trusts the file
pub fn close(self: *ElfDynLib) void {
os.munmap(self.memory);
self.* = undefined;
}
pub fn lookup(self: *ElfDynLib, comptime T: type, name: [:0]const u8) ?T {
if (self.lookupAddress("", name)) |symbol| {
return @as(T, @ptrFromInt(symbol));
} else {
return null;
}
}
/// Returns the address of the symbol
pub fn lookupAddress(self: *const ElfDynLib, vername: []const u8, name: []const u8) ?usize {
const maybe_versym = if (self.verdef == null) null else self.versym;
const OK_TYPES = (1 << elf.STT_NOTYPE | 1 << elf.STT_OBJECT | 1 << elf.STT_FUNC | 1 << elf.STT_COMMON);
const OK_BINDS = (1 << elf.STB_GLOBAL | 1 << elf.STB_WEAK | 1 << elf.STB_GNU_UNIQUE);
var i: usize = 0;
while (i < self.hashtab[1]) : (i += 1) {
if (0 == (@as(u32, 1) << @as(u5, @intCast(self.syms[i].st_info & 0xf)) & OK_TYPES)) continue;
if (0 == (@as(u32, 1) << @as(u5, @intCast(self.syms[i].st_info >> 4)) & OK_BINDS)) continue;
if (0 == self.syms[i].st_shndx) continue;
if (!mem.eql(u8, name, mem.sliceTo(self.strings + self.syms[i].st_name, 0))) continue;
if (maybe_versym) |versym| {
if (!checkver(self.verdef.?, versym[i], vername, self.strings))
continue;
}
return @intFromPtr(self.memory.ptr) + self.syms[i].st_value;
}
return null;
}
fn elfToMmapProt(elf_prot: u64) u32 {
var result: u32 = os.PROT.NONE;
if ((elf_prot & elf.PF_R) != 0) result |= os.PROT.READ;
if ((elf_prot & elf.PF_W) != 0) result |= os.PROT.WRITE;
if ((elf_prot & elf.PF_X) != 0) result |= os.PROT.EXEC;
return result;
}
};
fn checkver(def_arg: *elf.Verdef, vsym_arg: i32, vername: []const u8, strings: [*:0]u8) bool {
var def = def_arg;
const vsym = @as(u32, @bitCast(vsym_arg)) & 0x7fff;
while (true) {
if (0 == (def.vd_flags & elf.VER_FLG_BASE) and (def.vd_ndx & 0x7fff) == vsym)
break;
if (def.vd_next == 0)
return false;
def = @as(*elf.Verdef, @ptrFromInt(@intFromPtr(def) + def.vd_next));
}
const aux = @as(*elf.Verdaux, @ptrFromInt(@intFromPtr(def) + def.vd_aux));
return mem.eql(u8, vername, mem.sliceTo(strings + aux.vda_name, 0));
}
pub const WindowsDynLib = struct {
pub const Error = error{FileNotFound};
dll: windows.HMODULE,
pub fn open(path: []const u8) !WindowsDynLib {
const path_w = try windows.sliceToPrefixedFileW(path);
return openW(path_w.span().ptr);
}
pub fn openZ(path_c: [*:0]const u8) !WindowsDynLib {
const path_w = try windows.cStrToPrefixedFileW(path_c);
return openW(path_w.span().ptr);
}
pub fn openW(path_w: [*:0]const u16) !WindowsDynLib {
var offset: usize = 0;
if (path_w[0] == '\\' and path_w[1] == '?' and path_w[2] == '?' and path_w[3] == '\\') {
// + 4 to skip over the \??\
offset = 4;
}
return WindowsDynLib{
.dll = try windows.LoadLibraryW(path_w + offset),
};
}
pub fn close(self: *WindowsDynLib) void {
windows.FreeLibrary(self.dll);
self.* = undefined;
}
pub fn lookup(self: *WindowsDynLib, comptime T: type, name: [:0]const u8) ?T {
if (windows.kernel32.GetProcAddress(self.dll, name.ptr)) |addr| {
return @as(T, @ptrCast(@alignCast(addr)));
} else {
return null;
}
}
};
pub const DlDynlib = struct {
pub const Error = error{FileNotFound};
handle: *anyopaque,
pub fn open(path: []const u8) !DlDynlib {
const path_c = try os.toPosixPath(path);
return openZ(&path_c);
}
pub fn openZ(path_c: [*:0]const u8) !DlDynlib {
return DlDynlib{
.handle = system.dlopen(path_c, system.RTLD.LAZY) orelse {
return error.FileNotFound;
},
};
}
pub fn close(self: *DlDynlib) void {
_ = system.dlclose(self.handle);
self.* = undefined;
}
pub fn lookup(self: *DlDynlib, comptime T: type, name: [:0]const u8) ?T {
// dlsym (and other dl-functions) secretly take shadow parameter - return address on stack
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66826
if (@call(.never_tail, system.dlsym, .{ self.handle, name.ptr })) |symbol| {
return @as(T, @ptrCast(@alignCast(symbol)));
} else {
return null;
}
}
};
test "dynamic_library" {
const libname = switch (builtin.os.tag) {
.linux, .freebsd, .openbsd => "invalid_so.so",
.windows => "invalid_dll.dll",
.macos, .tvos, .watchos, .ios => "invalid_dylib.dylib",
else => return error.SkipZigTest,
};
_ = DynLib.open(libname) catch |err| {
try testing.expect(err == error.FileNotFound);
return;
};
}