zig/lib/std/fmt/parse_float/convert_hex.zig
mlugg f26dda2117 all: migrate code to new cast builtin syntax
Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:

* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
2023-06-24 16:56:39 -07:00

90 lines
2.8 KiB
Zig

//! Conversion of hex-float representation into an accurate value.
//
// Derived from golang strconv/atof.go.
const std = @import("std");
const math = std.math;
const common = @import("common.zig");
const Number = common.Number;
const floatFromUnsigned = common.floatFromUnsigned;
// converts the form 0xMMM.NNNpEEE.
//
// MMM.NNN = mantissa
// EEE = exponent
//
// MMM.NNN is stored as an integer, the exponent is offset.
pub fn convertHex(comptime T: type, n_: Number(T)) T {
const MantissaT = common.mantissaType(T);
var n = n_;
if (n.mantissa == 0) {
return if (n.negative) -0.0 else 0.0;
}
const max_exp = math.floatExponentMax(T);
const min_exp = math.floatExponentMin(T);
const mantissa_bits = math.floatMantissaBits(T);
const exp_bits = math.floatExponentBits(T);
const exp_bias = min_exp - 1;
// mantissa now implicitly divided by 2^mantissa_bits
n.exponent += mantissa_bits;
// Shift mantissa and exponent to bring representation into float range.
// Eventually we want a mantissa with a leading 1-bit followed by mantbits other bits.
// For rounding, we need two more, where the bottom bit represents
// whether that bit or any later bit was non-zero.
// (If the mantissa has already lost non-zero bits, trunc is true,
// and we OR in a 1 below after shifting left appropriately.)
while (n.mantissa != 0 and n.mantissa >> (mantissa_bits + 2) == 0) {
n.mantissa <<= 1;
n.exponent -= 1;
}
if (n.many_digits) {
n.mantissa |= 1;
}
while (n.mantissa >> (1 + mantissa_bits + 2) != 0) {
n.mantissa = (n.mantissa >> 1) | (n.mantissa & 1);
n.exponent += 1;
}
// If exponent is too negative,
// denormalize in hopes of making it representable.
// (The -2 is for the rounding bits.)
while (n.mantissa > 1 and n.exponent < min_exp - 2) {
n.mantissa = (n.mantissa >> 1) | (n.mantissa & 1);
n.exponent += 1;
}
// Round using two bottom bits.
var round = n.mantissa & 3;
n.mantissa >>= 2;
round |= n.mantissa & 1; // round to even (round up if mantissa is odd)
n.exponent += 2;
if (round == 3) {
n.mantissa += 1;
if (n.mantissa == 1 << (1 + mantissa_bits)) {
n.mantissa >>= 1;
n.exponent += 1;
}
}
// Denormal or zero
if (n.mantissa >> mantissa_bits == 0) {
n.exponent = exp_bias;
}
// Infinity and range error
if (n.exponent > max_exp) {
return math.inf(T);
}
var bits = n.mantissa & ((1 << mantissa_bits) - 1);
bits |= @as(MantissaT, @intCast((n.exponent - exp_bias) & ((1 << exp_bits) - 1))) << mantissa_bits;
if (n.negative) {
bits |= 1 << (mantissa_bits + exp_bits);
}
return floatFromUnsigned(T, MantissaT, bits);
}