zig/lib/std/priority_dequeue.zig
Niles Salter 82470d4f89 [priority_dequeue] Fix out-of-bounds access
This makes it so `first_child_index` will not be accessed when it is equal to `self.len`. (i.e. `self.items[self.len]` will not happen) The access itself was "safe" (as in, `self.len < self.items.len`) because we were only calling `doSiftDown` in the case where there was a stale value at `self.items[self.len]`. However, it is still technically a bug, and can manifest by an unnecessary comparison of a value to a copy of itself.
2023-06-22 02:03:53 -07:00

1027 lines
34 KiB
Zig

const std = @import("std.zig");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const Order = std.math.Order;
const testing = std.testing;
const expect = testing.expect;
const expectEqual = testing.expectEqual;
const expectError = testing.expectError;
/// Priority Dequeue for storing generic data. Initialize with `init`.
/// Provide `compareFn` that returns `Order.lt` when its second
/// argument should get min-popped before its third argument,
/// `Order.eq` if the arguments are of equal priority, or `Order.gt`
/// if the third argument should be min-popped second.
/// Popping the max element works in reverse. For example,
/// to make `popMin` return the smallest number, provide
/// `fn lessThan(context: void, a: T, b: T) Order { _ = context; return std.math.order(a, b); }`
pub fn PriorityDequeue(comptime T: type, comptime Context: type, comptime compareFn: fn (context: Context, a: T, b: T) Order) type {
return struct {
const Self = @This();
items: []T,
len: usize,
allocator: Allocator,
context: Context,
/// Initialize and return a new priority dequeue.
pub fn init(allocator: Allocator, context: Context) Self {
return Self{
.items = &[_]T{},
.len = 0,
.allocator = allocator,
.context = context,
};
}
/// Free memory used by the dequeue.
pub fn deinit(self: Self) void {
self.allocator.free(self.items);
}
/// Insert a new element, maintaining priority.
pub fn add(self: *Self, elem: T) !void {
try self.ensureUnusedCapacity(1);
addUnchecked(self, elem);
}
/// Add each element in `items` to the dequeue.
pub fn addSlice(self: *Self, items: []const T) !void {
try self.ensureUnusedCapacity(items.len);
for (items) |e| {
self.addUnchecked(e);
}
}
fn addUnchecked(self: *Self, elem: T) void {
self.items[self.len] = elem;
if (self.len > 0) {
const start = self.getStartForSiftUp(elem, self.len);
self.siftUp(start);
}
self.len += 1;
}
fn isMinLayer(index: usize) bool {
// In the min-max heap structure:
// The first element is on a min layer;
// next two are on a max layer;
// next four are on a min layer, and so on.
return 1 == @clz(index +% 1) & 1;
}
fn nextIsMinLayer(self: Self) bool {
return isMinLayer(self.len);
}
const StartIndexAndLayer = struct {
index: usize,
min_layer: bool,
};
fn getStartForSiftUp(self: Self, child: T, index: usize) StartIndexAndLayer {
var child_index = index;
var parent_index = parentIndex(child_index);
const parent = self.items[parent_index];
const min_layer = self.nextIsMinLayer();
const order = compareFn(self.context, child, parent);
if ((min_layer and order == .gt) or (!min_layer and order == .lt)) {
// We must swap the item with it's parent if it is on the "wrong" layer
self.items[parent_index] = child;
self.items[child_index] = parent;
return .{
.index = parent_index,
.min_layer = !min_layer,
};
} else {
return .{
.index = child_index,
.min_layer = min_layer,
};
}
}
fn siftUp(self: *Self, start: StartIndexAndLayer) void {
if (start.min_layer) {
doSiftUp(self, start.index, .lt);
} else {
doSiftUp(self, start.index, .gt);
}
}
fn doSiftUp(self: *Self, start_index: usize, target_order: Order) void {
var child_index = start_index;
while (child_index > 2) {
var grandparent_index = grandparentIndex(child_index);
const child = self.items[child_index];
const grandparent = self.items[grandparent_index];
// If the grandparent is already better or equal, we have gone as far as we need to
if (compareFn(self.context, child, grandparent) != target_order) break;
// Otherwise swap the item with it's grandparent
self.items[grandparent_index] = child;
self.items[child_index] = grandparent;
child_index = grandparent_index;
}
}
/// Look at the smallest element in the dequeue. Returns
/// `null` if empty.
pub fn peekMin(self: *Self) ?T {
return if (self.len > 0) self.items[0] else null;
}
/// Look at the largest element in the dequeue. Returns
/// `null` if empty.
pub fn peekMax(self: *Self) ?T {
if (self.len == 0) return null;
if (self.len == 1) return self.items[0];
if (self.len == 2) return self.items[1];
return self.bestItemAtIndices(1, 2, .gt).item;
}
fn maxIndex(self: Self) ?usize {
if (self.len == 0) return null;
if (self.len == 1) return 0;
if (self.len == 2) return 1;
return self.bestItemAtIndices(1, 2, .gt).index;
}
/// Pop the smallest element from the dequeue. Returns
/// `null` if empty.
pub fn removeMinOrNull(self: *Self) ?T {
return if (self.len > 0) self.removeMin() else null;
}
/// Remove and return the smallest element from the
/// dequeue.
pub fn removeMin(self: *Self) T {
return self.removeIndex(0);
}
/// Pop the largest element from the dequeue. Returns
/// `null` if empty.
pub fn removeMaxOrNull(self: *Self) ?T {
return if (self.len > 0) self.removeMax() else null;
}
/// Remove and return the largest element from the
/// dequeue.
pub fn removeMax(self: *Self) T {
return self.removeIndex(self.maxIndex().?);
}
/// Remove and return element at index. Indices are in the
/// same order as iterator, which is not necessarily priority
/// order.
pub fn removeIndex(self: *Self, index: usize) T {
assert(self.len > index);
const item = self.items[index];
const last = self.items[self.len - 1];
self.items[index] = last;
self.len -= 1;
siftDown(self, index);
return item;
}
fn siftDown(self: *Self, index: usize) void {
if (isMinLayer(index)) {
self.doSiftDown(index, .lt);
} else {
self.doSiftDown(index, .gt);
}
}
fn doSiftDown(self: *Self, start_index: usize, target_order: Order) void {
var index = start_index;
const half = self.len >> 1;
while (true) {
const first_grandchild_index = firstGrandchildIndex(index);
const last_grandchild_index = first_grandchild_index + 3;
const elem = self.items[index];
if (last_grandchild_index < self.len) {
// All four grandchildren exist
const index2 = first_grandchild_index + 1;
const index3 = index2 + 1;
// Find the best grandchild
const best_left = self.bestItemAtIndices(first_grandchild_index, index2, target_order);
const best_right = self.bestItemAtIndices(index3, last_grandchild_index, target_order);
const best_grandchild = self.bestItem(best_left, best_right, target_order);
// If the item is better than or equal to its best grandchild, we are done
if (compareFn(self.context, best_grandchild.item, elem) != target_order) return;
// Otherwise, swap them
self.items[best_grandchild.index] = elem;
self.items[index] = best_grandchild.item;
index = best_grandchild.index;
// We might need to swap the element with it's parent
self.swapIfParentIsBetter(elem, index, target_order);
} else {
// The children or grandchildren are the last layer
const first_child_index = firstChildIndex(index);
if (first_child_index >= self.len) return;
const best_descendent = self.bestDescendent(first_child_index, first_grandchild_index, target_order);
// If the item is better than or equal to its best descendant, we are done
if (compareFn(self.context, best_descendent.item, elem) != target_order) return;
// Otherwise swap them
self.items[best_descendent.index] = elem;
self.items[index] = best_descendent.item;
index = best_descendent.index;
// If we didn't swap a grandchild, we are done
if (index < first_grandchild_index) return;
// We might need to swap the element with it's parent
self.swapIfParentIsBetter(elem, index, target_order);
return;
}
// If we are now in the last layer, we are done
if (index >= half) return;
}
}
fn swapIfParentIsBetter(self: *Self, child: T, child_index: usize, target_order: Order) void {
const parent_index = parentIndex(child_index);
const parent = self.items[parent_index];
if (compareFn(self.context, parent, child) == target_order) {
self.items[parent_index] = child;
self.items[child_index] = parent;
}
}
const ItemAndIndex = struct {
item: T,
index: usize,
};
fn getItem(self: Self, index: usize) ItemAndIndex {
return .{
.item = self.items[index],
.index = index,
};
}
fn bestItem(self: Self, item1: ItemAndIndex, item2: ItemAndIndex, target_order: Order) ItemAndIndex {
if (compareFn(self.context, item1.item, item2.item) == target_order) {
return item1;
} else {
return item2;
}
}
fn bestItemAtIndices(self: Self, index1: usize, index2: usize, target_order: Order) ItemAndIndex {
var item1 = self.getItem(index1);
var item2 = self.getItem(index2);
return self.bestItem(item1, item2, target_order);
}
fn bestDescendent(self: Self, first_child_index: usize, first_grandchild_index: usize, target_order: Order) ItemAndIndex {
const second_child_index = first_child_index + 1;
if (first_grandchild_index >= self.len) {
// No grandchildren, find the best child (second may not exist)
if (second_child_index >= self.len) {
return .{
.item = self.items[first_child_index],
.index = first_child_index,
};
} else {
return self.bestItemAtIndices(first_child_index, second_child_index, target_order);
}
}
const second_grandchild_index = first_grandchild_index + 1;
if (second_grandchild_index >= self.len) {
// One grandchild, so we know there is a second child. Compare first grandchild and second child
return self.bestItemAtIndices(first_grandchild_index, second_child_index, target_order);
}
const best_left_grandchild_index = self.bestItemAtIndices(first_grandchild_index, second_grandchild_index, target_order).index;
const third_grandchild_index = second_grandchild_index + 1;
if (third_grandchild_index >= self.len) {
// Two grandchildren, and we know the best. Compare this to second child.
return self.bestItemAtIndices(best_left_grandchild_index, second_child_index, target_order);
} else {
// Three grandchildren, compare the min of the first two with the third
return self.bestItemAtIndices(best_left_grandchild_index, third_grandchild_index, target_order);
}
}
/// Return the number of elements remaining in the dequeue
pub fn count(self: Self) usize {
return self.len;
}
/// Return the number of elements that can be added to the
/// dequeue before more memory is allocated.
pub fn capacity(self: Self) usize {
return self.items.len;
}
/// Dequeue takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// De-initialize with `deinit`.
pub fn fromOwnedSlice(allocator: Allocator, items: []T, context: Context) Self {
var queue = Self{
.items = items,
.len = items.len,
.allocator = allocator,
.context = context,
};
if (queue.len <= 1) return queue;
const half = (queue.len >> 1) - 1;
var i: usize = 0;
while (i <= half) : (i += 1) {
const index = half - i;
queue.siftDown(index);
}
return queue;
}
/// Ensure that the dequeue can fit at least `new_capacity` items.
pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) !void {
var better_capacity = self.capacity();
if (better_capacity >= new_capacity) return;
while (true) {
better_capacity += better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
self.items = try self.allocator.realloc(self.items, better_capacity);
}
/// Ensure that the dequeue can fit at least `additional_count` **more** items.
pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) !void {
return self.ensureTotalCapacity(self.len + additional_count);
}
/// Reduce allocated capacity to `new_len`.
pub fn shrinkAndFree(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
// Cannot shrink to smaller than the current queue size without invalidating the heap property
assert(new_len >= self.len);
self.items = self.allocator.realloc(self.items[0..], new_len) catch |e| switch (e) {
error.OutOfMemory => { // no problem, capacity is still correct then.
self.items.len = new_len;
return;
},
};
}
pub fn update(self: *Self, elem: T, new_elem: T) !void {
const old_index = blk: {
var idx: usize = 0;
while (idx < self.len) : (idx += 1) {
const item = self.items[idx];
if (compareFn(self.context, item, elem) == .eq) break :blk idx;
}
return error.ElementNotFound;
};
_ = self.removeIndex(old_index);
self.addUnchecked(new_elem);
}
pub const Iterator = struct {
queue: *PriorityDequeue(T, Context, compareFn),
count: usize,
pub fn next(it: *Iterator) ?T {
if (it.count >= it.queue.len) return null;
const out = it.count;
it.count += 1;
return it.queue.items[out];
}
pub fn reset(it: *Iterator) void {
it.count = 0;
}
};
/// Return an iterator that walks the queue without consuming
/// it. Invalidated if the queue is modified.
pub fn iterator(self: *Self) Iterator {
return Iterator{
.queue = self,
.count = 0,
};
}
fn dump(self: *Self) void {
const print = std.debug.print;
print("{{ ", .{});
print("items: ", .{});
for (self.items, 0..) |e, i| {
if (i >= self.len) break;
print("{}, ", .{e});
}
print("array: ", .{});
for (self.items) |e| {
print("{}, ", .{e});
}
print("len: {} ", .{self.len});
print("capacity: {}", .{self.capacity()});
print(" }}\n", .{});
}
fn parentIndex(index: usize) usize {
return (index - 1) >> 1;
}
fn grandparentIndex(index: usize) usize {
return parentIndex(parentIndex(index));
}
fn firstChildIndex(index: usize) usize {
return (index << 1) + 1;
}
fn firstGrandchildIndex(index: usize) usize {
return firstChildIndex(firstChildIndex(index));
}
};
}
fn lessThanComparison(context: void, a: u32, b: u32) Order {
_ = context;
return std.math.order(a, b);
}
const PDQ = PriorityDequeue(u32, void, lessThanComparison);
test "std.PriorityDequeue: add and remove min" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(54);
try queue.add(12);
try queue.add(7);
try queue.add(23);
try queue.add(25);
try queue.add(13);
try expectEqual(@as(u32, 7), queue.removeMin());
try expectEqual(@as(u32, 12), queue.removeMin());
try expectEqual(@as(u32, 13), queue.removeMin());
try expectEqual(@as(u32, 23), queue.removeMin());
try expectEqual(@as(u32, 25), queue.removeMin());
try expectEqual(@as(u32, 54), queue.removeMin());
}
test "std.PriorityDequeue: add and remove min structs" {
const S = struct {
size: u32,
};
var queue = PriorityDequeue(S, void, struct {
fn order(context: void, a: S, b: S) Order {
_ = context;
return std.math.order(a.size, b.size);
}
}.order).init(testing.allocator, {});
defer queue.deinit();
try queue.add(.{ .size = 54 });
try queue.add(.{ .size = 12 });
try queue.add(.{ .size = 7 });
try queue.add(.{ .size = 23 });
try queue.add(.{ .size = 25 });
try queue.add(.{ .size = 13 });
try expectEqual(@as(u32, 7), queue.removeMin().size);
try expectEqual(@as(u32, 12), queue.removeMin().size);
try expectEqual(@as(u32, 13), queue.removeMin().size);
try expectEqual(@as(u32, 23), queue.removeMin().size);
try expectEqual(@as(u32, 25), queue.removeMin().size);
try expectEqual(@as(u32, 54), queue.removeMin().size);
}
test "std.PriorityDequeue: add and remove max" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(54);
try queue.add(12);
try queue.add(7);
try queue.add(23);
try queue.add(25);
try queue.add(13);
try expectEqual(@as(u32, 54), queue.removeMax());
try expectEqual(@as(u32, 25), queue.removeMax());
try expectEqual(@as(u32, 23), queue.removeMax());
try expectEqual(@as(u32, 13), queue.removeMax());
try expectEqual(@as(u32, 12), queue.removeMax());
try expectEqual(@as(u32, 7), queue.removeMax());
}
test "std.PriorityDequeue: add and remove same min" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(1);
try queue.add(1);
try queue.add(2);
try queue.add(2);
try queue.add(1);
try queue.add(1);
try expectEqual(@as(u32, 1), queue.removeMin());
try expectEqual(@as(u32, 1), queue.removeMin());
try expectEqual(@as(u32, 1), queue.removeMin());
try expectEqual(@as(u32, 1), queue.removeMin());
try expectEqual(@as(u32, 2), queue.removeMin());
try expectEqual(@as(u32, 2), queue.removeMin());
}
test "std.PriorityDequeue: add and remove same max" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(1);
try queue.add(1);
try queue.add(2);
try queue.add(2);
try queue.add(1);
try queue.add(1);
try expectEqual(@as(u32, 2), queue.removeMax());
try expectEqual(@as(u32, 2), queue.removeMax());
try expectEqual(@as(u32, 1), queue.removeMax());
try expectEqual(@as(u32, 1), queue.removeMax());
try expectEqual(@as(u32, 1), queue.removeMax());
try expectEqual(@as(u32, 1), queue.removeMax());
}
test "std.PriorityDequeue: removeOrNull empty" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try expect(queue.removeMinOrNull() == null);
try expect(queue.removeMaxOrNull() == null);
}
test "std.PriorityDequeue: edge case 3 elements" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(9);
try queue.add(3);
try queue.add(2);
try expectEqual(@as(u32, 2), queue.removeMin());
try expectEqual(@as(u32, 3), queue.removeMin());
try expectEqual(@as(u32, 9), queue.removeMin());
}
test "std.PriorityDequeue: edge case 3 elements max" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(9);
try queue.add(3);
try queue.add(2);
try expectEqual(@as(u32, 9), queue.removeMax());
try expectEqual(@as(u32, 3), queue.removeMax());
try expectEqual(@as(u32, 2), queue.removeMax());
}
test "std.PriorityDequeue: peekMin" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try expect(queue.peekMin() == null);
try queue.add(9);
try queue.add(3);
try queue.add(2);
try expect(queue.peekMin().? == 2);
try expect(queue.peekMin().? == 2);
}
test "std.PriorityDequeue: peekMax" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try expect(queue.peekMin() == null);
try queue.add(9);
try queue.add(3);
try queue.add(2);
try expect(queue.peekMax().? == 9);
try expect(queue.peekMax().? == 9);
}
test "std.PriorityDequeue: sift up with odd indices, removeMin" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
for (items) |e| {
try queue.add(e);
}
const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
for (sorted_items) |e| {
try expectEqual(e, queue.removeMin());
}
}
test "std.PriorityDequeue: sift up with odd indices, removeMax" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
for (items) |e| {
try queue.add(e);
}
const sorted_items = [_]u32{ 25, 24, 24, 22, 21, 16, 15, 15, 14, 13, 12, 11, 7, 7, 6, 5, 2, 1 };
for (sorted_items) |e| {
try expectEqual(e, queue.removeMax());
}
}
test "std.PriorityDequeue: addSlice min" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
try queue.addSlice(items[0..]);
const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
for (sorted_items) |e| {
try expectEqual(e, queue.removeMin());
}
}
test "std.PriorityDequeue: addSlice max" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
try queue.addSlice(items[0..]);
const sorted_items = [_]u32{ 25, 24, 24, 22, 21, 16, 15, 15, 14, 13, 12, 11, 7, 7, 6, 5, 2, 1 };
for (sorted_items) |e| {
try expectEqual(e, queue.removeMax());
}
}
test "std.PriorityDequeue: fromOwnedSlice trivial case 0" {
const items = [0]u32{};
const queue_items = try testing.allocator.dupe(u32, &items);
var queue = PDQ.fromOwnedSlice(testing.allocator, queue_items[0..], {});
defer queue.deinit();
try expectEqual(@as(usize, 0), queue.len);
try expect(queue.removeMinOrNull() == null);
}
test "std.PriorityDequeue: fromOwnedSlice trivial case 1" {
const items = [1]u32{1};
const queue_items = try testing.allocator.dupe(u32, &items);
var queue = PDQ.fromOwnedSlice(testing.allocator, queue_items[0..], {});
defer queue.deinit();
try expectEqual(@as(usize, 1), queue.len);
try expectEqual(items[0], queue.removeMin());
try expect(queue.removeMinOrNull() == null);
}
test "std.PriorityDequeue: fromOwnedSlice" {
const items = [_]u32{ 15, 7, 21, 14, 13, 22, 12, 6, 7, 25, 5, 24, 11, 16, 15, 24, 2, 1 };
const queue_items = try testing.allocator.dupe(u32, items[0..]);
var queue = PDQ.fromOwnedSlice(testing.allocator, queue_items[0..], {});
defer queue.deinit();
const sorted_items = [_]u32{ 1, 2, 5, 6, 7, 7, 11, 12, 13, 14, 15, 15, 16, 21, 22, 24, 24, 25 };
for (sorted_items) |e| {
try expectEqual(e, queue.removeMin());
}
}
test "std.PriorityDequeue: update min queue" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(55);
try queue.add(44);
try queue.add(11);
try queue.update(55, 5);
try queue.update(44, 4);
try queue.update(11, 1);
try expectEqual(@as(u32, 1), queue.removeMin());
try expectEqual(@as(u32, 4), queue.removeMin());
try expectEqual(@as(u32, 5), queue.removeMin());
}
test "std.PriorityDequeue: update same min queue" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(1);
try queue.add(1);
try queue.add(2);
try queue.add(2);
try queue.update(1, 5);
try queue.update(2, 4);
try expectEqual(@as(u32, 1), queue.removeMin());
try expectEqual(@as(u32, 2), queue.removeMin());
try expectEqual(@as(u32, 4), queue.removeMin());
try expectEqual(@as(u32, 5), queue.removeMin());
}
test "std.PriorityDequeue: update max queue" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(55);
try queue.add(44);
try queue.add(11);
try queue.update(55, 5);
try queue.update(44, 1);
try queue.update(11, 4);
try expectEqual(@as(u32, 5), queue.removeMax());
try expectEqual(@as(u32, 4), queue.removeMax());
try expectEqual(@as(u32, 1), queue.removeMax());
}
test "std.PriorityDequeue: update same max queue" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(1);
try queue.add(1);
try queue.add(2);
try queue.add(2);
try queue.update(1, 5);
try queue.update(2, 4);
try expectEqual(@as(u32, 5), queue.removeMax());
try expectEqual(@as(u32, 4), queue.removeMax());
try expectEqual(@as(u32, 2), queue.removeMax());
try expectEqual(@as(u32, 1), queue.removeMax());
}
test "std.PriorityDequeue: update after remove" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(1);
try expectEqual(@as(u32, 1), queue.removeMin());
try expectError(error.ElementNotFound, queue.update(1, 1));
}
test "std.PriorityDequeue: iterator" {
var queue = PDQ.init(testing.allocator, {});
var map = std.AutoHashMap(u32, void).init(testing.allocator);
defer {
queue.deinit();
map.deinit();
}
const items = [_]u32{ 54, 12, 7, 23, 25, 13 };
for (items) |e| {
_ = try queue.add(e);
_ = try map.put(e, {});
}
var it = queue.iterator();
while (it.next()) |e| {
_ = map.remove(e);
}
try expectEqual(@as(usize, 0), map.count());
}
test "std.PriorityDequeue: remove at index" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.add(3);
try queue.add(2);
try queue.add(1);
var it = queue.iterator();
var elem = it.next();
var idx: usize = 0;
const two_idx = while (elem != null) : (elem = it.next()) {
if (elem.? == 2)
break idx;
idx += 1;
} else unreachable;
try expectEqual(queue.removeIndex(two_idx), 2);
try expectEqual(queue.removeMin(), 1);
try expectEqual(queue.removeMin(), 3);
try expectEqual(queue.removeMinOrNull(), null);
}
test "std.PriorityDequeue: iterator while empty" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
var it = queue.iterator();
try expectEqual(it.next(), null);
}
test "std.PriorityDequeue: shrinkAndFree" {
var queue = PDQ.init(testing.allocator, {});
defer queue.deinit();
try queue.ensureTotalCapacity(4);
try expect(queue.capacity() >= 4);
try queue.add(1);
try queue.add(2);
try queue.add(3);
try expect(queue.capacity() >= 4);
try expectEqual(@as(usize, 3), queue.len);
queue.shrinkAndFree(3);
try expectEqual(@as(usize, 3), queue.capacity());
try expectEqual(@as(usize, 3), queue.len);
try expectEqual(@as(u32, 3), queue.removeMax());
try expectEqual(@as(u32, 2), queue.removeMax());
try expectEqual(@as(u32, 1), queue.removeMax());
try expect(queue.removeMaxOrNull() == null);
}
test "std.PriorityDequeue: fuzz testing min" {
var prng = std.rand.DefaultPrng.init(0x12345678);
const random = prng.random();
const test_case_count = 100;
const queue_size = 1_000;
var i: usize = 0;
while (i < test_case_count) : (i += 1) {
try fuzzTestMin(random, queue_size);
}
}
fn fuzzTestMin(rng: std.rand.Random, comptime queue_size: usize) !void {
const allocator = testing.allocator;
const items = try generateRandomSlice(allocator, rng, queue_size);
var queue = PDQ.fromOwnedSlice(allocator, items, {});
defer queue.deinit();
var last_removed: ?u32 = null;
while (queue.removeMinOrNull()) |next| {
if (last_removed) |last| {
try expect(last <= next);
}
last_removed = next;
}
}
test "std.PriorityDequeue: fuzz testing max" {
var prng = std.rand.DefaultPrng.init(0x87654321);
const random = prng.random();
const test_case_count = 100;
const queue_size = 1_000;
var i: usize = 0;
while (i < test_case_count) : (i += 1) {
try fuzzTestMax(random, queue_size);
}
}
fn fuzzTestMax(rng: std.rand.Random, queue_size: usize) !void {
const allocator = testing.allocator;
const items = try generateRandomSlice(allocator, rng, queue_size);
var queue = PDQ.fromOwnedSlice(testing.allocator, items, {});
defer queue.deinit();
var last_removed: ?u32 = null;
while (queue.removeMaxOrNull()) |next| {
if (last_removed) |last| {
try expect(last >= next);
}
last_removed = next;
}
}
test "std.PriorityDequeue: fuzz testing min and max" {
var prng = std.rand.DefaultPrng.init(0x87654321);
const random = prng.random();
const test_case_count = 100;
const queue_size = 1_000;
var i: usize = 0;
while (i < test_case_count) : (i += 1) {
try fuzzTestMinMax(random, queue_size);
}
}
fn fuzzTestMinMax(rng: std.rand.Random, queue_size: usize) !void {
const allocator = testing.allocator;
const items = try generateRandomSlice(allocator, rng, queue_size);
var queue = PDQ.fromOwnedSlice(allocator, items, {});
defer queue.deinit();
var last_min: ?u32 = null;
var last_max: ?u32 = null;
var i: usize = 0;
while (i < queue_size) : (i += 1) {
if (i % 2 == 0) {
const next = queue.removeMin();
if (last_min) |last| {
try expect(last <= next);
}
last_min = next;
} else {
const next = queue.removeMax();
if (last_max) |last| {
try expect(last >= next);
}
last_max = next;
}
}
}
fn generateRandomSlice(allocator: std.mem.Allocator, rng: std.rand.Random, size: usize) ![]u32 {
var array = std.ArrayList(u32).init(allocator);
try array.ensureTotalCapacity(size);
var i: usize = 0;
while (i < size) : (i += 1) {
const elem = rng.int(u32);
try array.append(elem);
}
return array.toOwnedSlice();
}
fn contextLessThanComparison(context: []const u32, a: usize, b: usize) Order {
return std.math.order(context[a], context[b]);
}
const CPDQ = PriorityDequeue(usize, []const u32, contextLessThanComparison);
test "std.PriorityDequeue: add and remove" {
const context = [_]u32{ 5, 3, 4, 2, 2, 8, 0 };
var queue = CPDQ.init(testing.allocator, context[0..]);
defer queue.deinit();
try queue.add(0);
try queue.add(1);
try queue.add(2);
try queue.add(3);
try queue.add(4);
try queue.add(5);
try queue.add(6);
try expectEqual(@as(usize, 6), queue.removeMin());
try expectEqual(@as(usize, 5), queue.removeMax());
try expectEqual(@as(usize, 3), queue.removeMin());
try expectEqual(@as(usize, 0), queue.removeMax());
try expectEqual(@as(usize, 4), queue.removeMin());
try expectEqual(@as(usize, 2), queue.removeMax());
try expectEqual(@as(usize, 1), queue.removeMin());
}
var all_cmps_unique = true;
test "std.PriorityDeque: don't compare a value to a copy of itself" {
var depq = PriorityDequeue(u32, void, struct {
fn uniqueLessThan(_: void, a: u32, b: u32) Order {
all_cmps_unique = all_cmps_unique and (a != b);
return std.math.order(a, b);
}
}.uniqueLessThan).init(testing.allocator, {});
defer depq.deinit();
try depq.add(1);
try depq.add(2);
try depq.add(3);
try depq.add(4);
try depq.add(5);
try depq.add(6);
_ = depq.removeIndex(2);
try expectEqual(all_cmps_unique, true);
}