zig/lib/std/hash_map.zig
Andrew Kelley bf3ac66150
remove type coercion from array values to references
* Implements #3768. This is a sweeping breaking change that requires
   many (trivial) edits to Zig source code. Array values no longer
   coerced to slices; however one may use `&` to obtain a reference to
   an array value, which may then be coerced to a slice.

 * Adds `IrInstruction::dump`, for debugging purposes. It's useful to
   call to inspect the instruction when debugging Zig IR.

 * Fixes bugs with result location semantics. See the new behavior test
   cases, and compile error test cases.

 * Fixes bugs with `@typeInfo` not properly resolving const values.

 * Behavior tests are passing but std lib tests are not yet. There
   is more work to do before merging this branch.
2019-11-27 03:37:50 -05:00

564 lines
19 KiB
Zig

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const math = std.math;
const mem = std.mem;
const meta = std.meta;
const autoHash = std.hash.autoHash;
const Wyhash = std.hash.Wyhash;
const Allocator = mem.Allocator;
const builtin = @import("builtin");
const want_modification_safety = builtin.mode != builtin.Mode.ReleaseFast;
const debug_u32 = if (want_modification_safety) u32 else void;
pub fn AutoHashMap(comptime K: type, comptime V: type) type {
return HashMap(K, V, getAutoHashFn(K), getAutoEqlFn(K));
}
/// Builtin hashmap for strings as keys.
pub fn StringHashMap(comptime V: type) type {
return HashMap([]const u8, V, hashString, eqlString);
}
pub fn eqlString(a: []const u8, b: []const u8) bool {
return mem.eql(u8, a, b);
}
pub fn hashString(s: []const u8) u32 {
return @truncate(u32, std.hash.Wyhash.hash(0, s));
}
pub fn HashMap(comptime K: type, comptime V: type, comptime hash: fn (key: K) u32, comptime eql: fn (a: K, b: K) bool) type {
return struct {
entries: []Entry,
size: usize,
max_distance_from_start_index: usize,
allocator: *Allocator,
/// This is used to detect bugs where a hashtable is edited while an iterator is running.
modification_count: debug_u32,
const Self = @This();
pub const KV = struct {
key: K,
value: V,
};
const Entry = struct {
used: bool,
distance_from_start_index: usize,
kv: KV,
};
pub const GetOrPutResult = struct {
kv: *KV,
found_existing: bool,
};
pub const Iterator = struct {
hm: *const Self,
// how many items have we returned
count: usize,
// iterator through the entry array
index: usize,
// used to detect concurrent modification
initial_modification_count: debug_u32,
pub fn next(it: *Iterator) ?*KV {
if (want_modification_safety) {
assert(it.initial_modification_count == it.hm.modification_count); // concurrent modification
}
if (it.count >= it.hm.size) return null;
while (it.index < it.hm.entries.len) : (it.index += 1) {
const entry = &it.hm.entries[it.index];
if (entry.used) {
it.index += 1;
it.count += 1;
return &entry.kv;
}
}
unreachable; // no next item
}
// Reset the iterator to the initial index
pub fn reset(it: *Iterator) void {
it.count = 0;
it.index = 0;
// Resetting the modification count too
it.initial_modification_count = it.hm.modification_count;
}
};
pub fn init(allocator: *Allocator) Self {
return Self{
.entries = &[_]Entry{},
.allocator = allocator,
.size = 0,
.max_distance_from_start_index = 0,
.modification_count = if (want_modification_safety) 0 else {},
};
}
pub fn deinit(hm: Self) void {
hm.allocator.free(hm.entries);
}
pub fn clear(hm: *Self) void {
for (hm.entries) |*entry| {
entry.used = false;
}
hm.size = 0;
hm.max_distance_from_start_index = 0;
hm.incrementModificationCount();
}
pub fn count(self: Self) usize {
return self.size;
}
/// If key exists this function cannot fail.
/// If there is an existing item with `key`, then the result
/// kv pointer points to it, and found_existing is true.
/// Otherwise, puts a new item with undefined value, and
/// the kv pointer points to it. Caller should then initialize
/// the data.
pub fn getOrPut(self: *Self, key: K) !GetOrPutResult {
// TODO this implementation can be improved - we should only
// have to hash once and find the entry once.
if (self.get(key)) |kv| {
return GetOrPutResult{
.kv = kv,
.found_existing = true,
};
}
self.incrementModificationCount();
try self.autoCapacity();
const put_result = self.internalPut(key);
assert(put_result.old_kv == null);
return GetOrPutResult{
.kv = &put_result.new_entry.kv,
.found_existing = false,
};
}
pub fn getOrPutValue(self: *Self, key: K, value: V) !*KV {
const res = try self.getOrPut(key);
if (!res.found_existing)
res.kv.value = value;
return res.kv;
}
fn optimizedCapacity(expected_count: usize) usize {
// ensure that the hash map will be at most 60% full if
// expected_count items are put into it
var optimized_capacity = expected_count * 5 / 3;
// an overflow here would mean the amount of memory required would not
// be representable in the address space
return math.ceilPowerOfTwo(usize, optimized_capacity) catch unreachable;
}
/// Increases capacity so that the hash map will be at most
/// 60% full when expected_count items are put into it
pub fn ensureCapacity(self: *Self, expected_count: usize) !void {
const optimized_capacity = optimizedCapacity(expected_count);
return self.ensureCapacityExact(optimized_capacity);
}
/// Sets the capacity to the new capacity if the new
/// capacity is greater than the current capacity.
/// New capacity must be a power of two.
fn ensureCapacityExact(self: *Self, new_capacity: usize) !void {
// capacity must always be a power of two to allow for modulo
// optimization in the constrainIndex fn
assert(math.isPowerOfTwo(new_capacity));
if (new_capacity <= self.entries.len) {
return;
}
const old_entries = self.entries;
try self.initCapacity(new_capacity);
self.incrementModificationCount();
if (old_entries.len > 0) {
// dump all of the old elements into the new table
for (old_entries) |*old_entry| {
if (old_entry.used) {
self.internalPut(old_entry.kv.key).new_entry.kv.value = old_entry.kv.value;
}
}
self.allocator.free(old_entries);
}
}
/// Returns the kv pair that was already there.
pub fn put(self: *Self, key: K, value: V) !?KV {
try self.autoCapacity();
return putAssumeCapacity(self, key, value);
}
/// Calls put() and asserts that no kv pair is clobbered.
pub fn putNoClobber(self: *Self, key: K, value: V) !void {
assert((try self.put(key, value)) == null);
}
pub fn putAssumeCapacity(self: *Self, key: K, value: V) ?KV {
assert(self.count() < self.entries.len);
self.incrementModificationCount();
const put_result = self.internalPut(key);
put_result.new_entry.kv.value = value;
return put_result.old_kv;
}
pub fn get(hm: *const Self, key: K) ?*KV {
if (hm.entries.len == 0) {
return null;
}
return hm.internalGet(key);
}
pub fn getValue(hm: *const Self, key: K) ?V {
return if (hm.get(key)) |kv| kv.value else null;
}
pub fn contains(hm: *const Self, key: K) bool {
return hm.get(key) != null;
}
/// Returns any kv pair that was removed.
pub fn remove(hm: *Self, key: K) ?KV {
if (hm.entries.len == 0) return null;
hm.incrementModificationCount();
const start_index = hm.keyToIndex(key);
{
var roll_over: usize = 0;
while (roll_over <= hm.max_distance_from_start_index) : (roll_over += 1) {
const index = hm.constrainIndex(start_index + roll_over);
var entry = &hm.entries[index];
if (!entry.used) return null;
if (!eql(entry.kv.key, key)) continue;
const removed_kv = entry.kv;
while (roll_over < hm.entries.len) : (roll_over += 1) {
const next_index = hm.constrainIndex(start_index + roll_over + 1);
const next_entry = &hm.entries[next_index];
if (!next_entry.used or next_entry.distance_from_start_index == 0) {
entry.used = false;
hm.size -= 1;
return removed_kv;
}
entry.* = next_entry.*;
entry.distance_from_start_index -= 1;
entry = next_entry;
}
unreachable; // shifting everything in the table
}
}
return null;
}
/// Calls remove(), asserts that a kv pair is removed, and discards it.
pub fn removeAssertDiscard(hm: *Self, key: K) void {
assert(hm.remove(key) != null);
}
pub fn iterator(hm: *const Self) Iterator {
return Iterator{
.hm = hm,
.count = 0,
.index = 0,
.initial_modification_count = hm.modification_count,
};
}
pub fn clone(self: Self) !Self {
var other = Self.init(self.allocator);
try other.initCapacity(self.entries.len);
var it = self.iterator();
while (it.next()) |entry| {
try other.putNoClobber(entry.key, entry.value);
}
return other;
}
fn autoCapacity(self: *Self) !void {
if (self.entries.len == 0) {
return self.ensureCapacityExact(16);
}
// if we get too full (60%), double the capacity
if (self.size * 5 >= self.entries.len * 3) {
return self.ensureCapacityExact(self.entries.len * 2);
}
}
fn initCapacity(hm: *Self, capacity: usize) !void {
hm.entries = try hm.allocator.alloc(Entry, capacity);
hm.size = 0;
hm.max_distance_from_start_index = 0;
for (hm.entries) |*entry| {
entry.used = false;
}
}
fn incrementModificationCount(hm: *Self) void {
if (want_modification_safety) {
hm.modification_count +%= 1;
}
}
const InternalPutResult = struct {
new_entry: *Entry,
old_kv: ?KV,
};
/// Returns a pointer to the new entry.
/// Asserts that there is enough space for the new item.
fn internalPut(self: *Self, orig_key: K) InternalPutResult {
var key = orig_key;
var value: V = undefined;
const start_index = self.keyToIndex(key);
var roll_over: usize = 0;
var distance_from_start_index: usize = 0;
var got_result_entry = false;
var result = InternalPutResult{
.new_entry = undefined,
.old_kv = null,
};
while (roll_over < self.entries.len) : ({
roll_over += 1;
distance_from_start_index += 1;
}) {
const index = self.constrainIndex(start_index + roll_over);
const entry = &self.entries[index];
if (entry.used and !eql(entry.kv.key, key)) {
if (entry.distance_from_start_index < distance_from_start_index) {
// robin hood to the rescue
const tmp = entry.*;
self.max_distance_from_start_index = math.max(self.max_distance_from_start_index, distance_from_start_index);
if (!got_result_entry) {
got_result_entry = true;
result.new_entry = entry;
}
entry.* = Entry{
.used = true,
.distance_from_start_index = distance_from_start_index,
.kv = KV{
.key = key,
.value = value,
},
};
key = tmp.kv.key;
value = tmp.kv.value;
distance_from_start_index = tmp.distance_from_start_index;
}
continue;
}
if (entry.used) {
result.old_kv = entry.kv;
} else {
// adding an entry. otherwise overwriting old value with
// same key
self.size += 1;
}
self.max_distance_from_start_index = math.max(distance_from_start_index, self.max_distance_from_start_index);
if (!got_result_entry) {
result.new_entry = entry;
}
entry.* = Entry{
.used = true,
.distance_from_start_index = distance_from_start_index,
.kv = KV{
.key = key,
.value = value,
},
};
return result;
}
unreachable; // put into a full map
}
fn internalGet(hm: Self, key: K) ?*KV {
const start_index = hm.keyToIndex(key);
{
var roll_over: usize = 0;
while (roll_over <= hm.max_distance_from_start_index) : (roll_over += 1) {
const index = hm.constrainIndex(start_index + roll_over);
const entry = &hm.entries[index];
if (!entry.used) return null;
if (eql(entry.kv.key, key)) return &entry.kv;
}
}
return null;
}
fn keyToIndex(hm: Self, key: K) usize {
return hm.constrainIndex(@as(usize, hash(key)));
}
fn constrainIndex(hm: Self, i: usize) usize {
// this is an optimization for modulo of power of two integers;
// it requires hm.entries.len to always be a power of two
return i & (hm.entries.len - 1);
}
};
}
test "basic hash map usage" {
var map = AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer map.deinit();
testing.expect((try map.put(1, 11)) == null);
testing.expect((try map.put(2, 22)) == null);
testing.expect((try map.put(3, 33)) == null);
testing.expect((try map.put(4, 44)) == null);
try map.putNoClobber(5, 55);
testing.expect((try map.put(5, 66)).?.value == 55);
testing.expect((try map.put(5, 55)).?.value == 66);
const gop1 = try map.getOrPut(5);
testing.expect(gop1.found_existing == true);
testing.expect(gop1.kv.value == 55);
gop1.kv.value = 77;
testing.expect(map.get(5).?.value == 77);
const gop2 = try map.getOrPut(99);
testing.expect(gop2.found_existing == false);
gop2.kv.value = 42;
testing.expect(map.get(99).?.value == 42);
const gop3 = try map.getOrPutValue(5, 5);
testing.expect(gop3.value == 77);
const gop4 = try map.getOrPutValue(100, 41);
testing.expect(gop4.value == 41);
testing.expect(map.contains(2));
testing.expect(map.get(2).?.value == 22);
testing.expect(map.getValue(2).? == 22);
const rmv1 = map.remove(2);
testing.expect(rmv1.?.key == 2);
testing.expect(rmv1.?.value == 22);
testing.expect(map.remove(2) == null);
testing.expect(map.get(2) == null);
testing.expect(map.getValue(2) == null);
map.removeAssertDiscard(3);
}
test "iterator hash map" {
var reset_map = AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer reset_map.deinit();
try reset_map.putNoClobber(1, 11);
try reset_map.putNoClobber(2, 22);
try reset_map.putNoClobber(3, 33);
// TODO this test depends on the hashing algorithm, because it assumes the
// order of the elements in the hashmap. This should not be the case.
var keys = [_]i32{
1,
3,
2,
};
var values = [_]i32{
11,
33,
22,
};
var it = reset_map.iterator();
var count: usize = 0;
while (it.next()) |next| {
testing.expect(next.key == keys[count]);
testing.expect(next.value == values[count]);
count += 1;
}
testing.expect(count == 3);
testing.expect(it.next() == null);
it.reset();
count = 0;
while (it.next()) |next| {
testing.expect(next.key == keys[count]);
testing.expect(next.value == values[count]);
count += 1;
if (count == 2) break;
}
it.reset();
var entry = it.next().?;
testing.expect(entry.key == keys[0]);
testing.expect(entry.value == values[0]);
}
test "ensure capacity" {
var map = AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer map.deinit();
try map.ensureCapacity(20);
const initialCapacity = map.entries.len;
testing.expect(initialCapacity >= 20);
var i: i32 = 0;
while (i < 20) : (i += 1) {
testing.expect(map.putAssumeCapacity(i, i + 10) == null);
}
// shouldn't resize from putAssumeCapacity
testing.expect(initialCapacity == map.entries.len);
}
pub fn getHashPtrAddrFn(comptime K: type) (fn (K) u32) {
return struct {
fn hash(key: K) u32 {
return getAutoHashFn(usize)(@ptrToInt(key));
}
}.hash;
}
pub fn getTrivialEqlFn(comptime K: type) (fn (K, K) bool) {
return struct {
fn eql(a: K, b: K) bool {
return a == b;
}
}.eql;
}
pub fn getAutoHashFn(comptime K: type) (fn (K) u32) {
return struct {
fn hash(key: K) u32 {
var hasher = Wyhash.init(0);
autoHash(&hasher, key);
return @truncate(u32, hasher.final());
}
}.hash;
}
pub fn getAutoEqlFn(comptime K: type) (fn (K, K) bool) {
return struct {
fn eql(a: K, b: K) bool {
return meta.eql(a, b);
}
}.eql;
}
pub fn getAutoHashStratFn(comptime K: type, comptime strategy: std.hash.Strategy) (fn (K) u32) {
return struct {
fn hash(key: K) u32 {
var hasher = Wyhash.init(0);
std.hash.autoHashStrat(&hasher, key, strategy);
return @truncate(u32, hasher.final());
}
}.hash;
}