zig/lib/std/reset_event.zig
2019-11-26 20:40:28 -05:00

433 lines
14 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const testing = std.testing;
const assert = std.debug.assert;
const Backoff = std.SpinLock.Backoff;
const c = std.c;
const os = std.os;
const time = std.time;
const linux = os.linux;
const windows = os.windows;
/// A resource object which supports blocking until signaled.
/// Once finished, the `deinit()` method should be called for correctness.
pub const ResetEvent = struct {
os_event: OsEvent,
pub fn init() ResetEvent {
return ResetEvent{ .os_event = OsEvent.init() };
}
pub fn deinit(self: *ResetEvent) void {
self.os_event.deinit();
self.* = undefined;
}
/// Returns whether or not the event is currenetly set
pub fn isSet(self: *ResetEvent) bool {
return self.os_event.isSet();
}
/// Sets the event if not already set and
/// wakes up AT LEAST one thread waiting the event.
/// Returns whether or not a thread was woken up.
pub fn set(self: *ResetEvent, auto_reset: bool) bool {
return self.os_event.set(auto_reset);
}
/// Resets the event to its original, unset state.
/// Returns whether or not the event was currently set before un-setting.
pub fn reset(self: *ResetEvent) bool {
return self.os_event.reset();
}
const WaitError = error{
/// The thread blocked longer than the maximum time specified.
TimedOut,
};
/// Wait for the event to be set by blocking the current thread.
/// Optionally provided timeout in nanoseconds which throws an
/// `error.TimedOut` if the thread blocked AT LEAST longer than specified.
/// Returns whether or not the thread blocked from the event being unset at the time of calling.
pub fn wait(self: *ResetEvent, timeout_ns: ?u64) WaitError!bool {
return self.os_event.wait(timeout_ns);
}
};
const OsEvent = if (builtin.single_threaded) DebugEvent else switch (builtin.os) {
.windows => WindowsEvent,
.linux => if (builtin.link_libc) PosixEvent else LinuxEvent,
else => if (builtin.link_libc) PosixEvent else SpinEvent,
};
const DebugEvent = struct {
is_set: @typeOf(set_init),
const set_init = if (std.debug.runtime_safety) false else {};
pub fn init() DebugEvent {
return DebugEvent{ .is_set = set_init };
}
pub fn deinit(self: *DebugEvent) void {
self.* = undefined;
}
pub fn isSet(self: *DebugEvent) bool {
if (!std.debug.runtime_safety)
return true;
return self.is_set;
}
pub fn set(self: *DebugEvent, auto_reset: bool) bool {
if (std.debug.runtime_safety)
self.is_set = !auto_reset;
return false;
}
pub fn reset(self: *DebugEvent) bool {
if (!std.debug.runtime_safety)
return false;
const was_set = self.is_set;
self.is_set = false;
return was_set;
}
pub fn wait(self: *DebugEvent, timeout: ?u64) ResetEvent.WaitError!bool {
if (std.debug.runtime_safety and !self.is_set)
@panic("deadlock detected");
return ResetEvent.WaitError.TimedOut;
}
};
fn AtomicEvent(comptime FutexImpl: type) type {
return struct {
state: u32,
const IS_SET: u32 = 1 << 0;
const WAIT_MASK = ~IS_SET;
pub const Self = @This();
pub const Futex = FutexImpl;
pub fn init() Self {
return Self{ .state = 0 };
}
pub fn deinit(self: *Self) void {
self.* = undefined;
}
pub fn isSet(self: *const Self) bool {
const state = @atomicLoad(u32, &self.state, .Acquire);
return (state & IS_SET) != 0;
}
pub fn reset(self: *Self) bool {
const old_state = @atomicRmw(u32, &self.state, .Xchg, 0, .Monotonic);
return (old_state & IS_SET) != 0;
}
pub fn set(self: *Self, auto_reset: bool) bool {
const new_state = if (auto_reset) 0 else IS_SET;
const old_state = @atomicRmw(u32, &self.state, .Xchg, new_state, .Release);
if ((old_state & WAIT_MASK) == 0) {
return false;
}
Futex.wake(&self.state);
return true;
}
pub fn wait(self: *Self, timeout: ?u64) ResetEvent.WaitError!bool {
var dummy_value: u32 = undefined;
const wait_token = @truncate(u32, @ptrToInt(&dummy_value));
var state = @atomicLoad(u32, &self.state, .Monotonic);
while (true) {
if ((state & IS_SET) != 0)
return false;
state = @cmpxchgWeak(u32, &self.state, state, wait_token, .Acquire, .Monotonic) orelse break;
}
try Futex.wait(&self.state, wait_token, timeout);
return true;
}
};
}
const SpinEvent = AtomicEvent(struct {
fn wake(ptr: *const u32) void {}
fn wait(ptr: *const u32, expected: u32, timeout: ?u64) ResetEvent.WaitError!void {
// TODO: handle platforms where time.Timer.start() fails
var spin = Backoff.init();
var timer = if (timeout == null) null else time.Timer.start() catch unreachable;
while (@atomicLoad(u32, ptr, .Acquire) == expected) {
spin.yield();
if (timeout) |timeout_ns| {
if (timer.?.read() > timeout_ns)
return ResetEvent.WaitError.TimedOut;
}
}
}
});
const LinuxEvent = AtomicEvent(struct {
fn wake(ptr: *const u32) void {
const key = @ptrCast(*const i32, ptr);
const rc = linux.futex_wake(key, linux.FUTEX_WAKE | linux.FUTEX_PRIVATE_FLAG, 1);
assert(linux.getErrno(rc) == 0);
}
fn wait(ptr: *const u32, expected: u32, timeout: ?u64) ResetEvent.WaitError!void {
var ts: linux.timespec = undefined;
var ts_ptr: ?*linux.timespec = null;
if (timeout) |timeout_ns| {
ts_ptr = &ts;
ts.tv_sec = @intCast(isize, timeout_ns / time.ns_per_s);
ts.tv_nsec = @intCast(isize, timeout_ns % time.ns_per_s);
}
const key = @ptrCast(*const i32, ptr);
const key_expect = @bitCast(i32, expected);
while (@atomicLoad(i32, key, .Acquire) == key_expect) {
const rc = linux.futex_wait(key, linux.FUTEX_WAIT | linux.FUTEX_PRIVATE_FLAG, key_expect, ts_ptr);
switch (linux.getErrno(rc)) {
0, linux.EAGAIN => break,
linux.EINTR => continue,
linux.ETIMEDOUT => return ResetEvent.WaitError.TimedOut,
else => unreachable,
}
}
}
});
const WindowsEvent = AtomicEvent(struct {
fn wake(ptr: *const u32) void {
if (getEventHandle()) |handle| {
const key = @ptrCast(*const c_void, ptr);
const rc = windows.ntdll.NtReleaseKeyedEvent(handle, key, windows.FALSE, null);
assert(rc == 0);
}
}
fn wait(ptr: *const u32, expected: u32, timeout: ?u64) ResetEvent.WaitError!void {
// fallback to spinlock if NT Keyed Events arent available
const handle = getEventHandle() orelse {
return SpinEvent.Futex.wait(ptr, expected, timeout);
};
// NT uses timeouts in units of 100ns with negative value being relative
var timeout_ptr: ?*windows.LARGE_INTEGER = null;
var timeout_value: windows.LARGE_INTEGER = undefined;
if (timeout) |timeout_ns| {
timeout_ptr = &timeout_value;
timeout_value = -@intCast(windows.LARGE_INTEGER, timeout_ns / 100);
}
// NtWaitForKeyedEvent doesnt have spurious wake-ups
if (@atomicLoad(u32, ptr, .Acquire) == expected) {
const key = @ptrCast(*const c_void, ptr);
const rc = windows.ntdll.NtWaitForKeyedEvent(handle, key, windows.FALSE, timeout_ptr);
switch (rc) {
0 => {},
windows.WAIT_TIMEOUT => return ResetEvent.WaitError.TimedOut,
else => unreachable,
}
}
}
var keyed_state = State.Uninitialized;
var keyed_handle: ?windows.HANDLE = null;
const State = enum(u8) {
Uninitialized,
Intializing,
Initialized,
};
fn getEventHandle() ?windows.HANDLE {
var spin = Backoff.init();
var state = @atomicLoad(State, &keyed_state, .Monotonic);
while (true) {
switch (state) {
.Initialized => {
return keyed_handle;
},
.Intializing => {
spin.yield();
state = @atomicLoad(State, &keyed_state, .Acquire);
},
.Uninitialized => state = @cmpxchgWeak(State, &keyed_state, state, .Intializing, .Acquire, .Monotonic) orelse {
var handle: windows.HANDLE = undefined;
const access_mask = windows.GENERIC_READ | windows.GENERIC_WRITE;
if (windows.ntdll.NtCreateKeyedEvent(&handle, access_mask, null, 0) == 0)
keyed_handle = handle;
@atomicStore(State, &keyed_state, .Initialized, .Release);
return keyed_handle;
},
}
}
}
});
const PosixEvent = struct {
state: u32,
cond: c.pthread_cond_t,
mutex: c.pthread_mutex_t,
const IS_SET: u32 = 1;
pub fn init() PosixEvent {
return PosixEvent{
.state = .0,
.cond = c.PTHREAD_COND_INITIALIZER,
.mutex = c.PTHREAD_MUTEX_INITIALIZER,
};
}
pub fn deinit(self: *PosixEvent) void {
// On dragonfly, the destroy functions return EINVAL if they were initialized statically.
const retm = c.pthread_mutex_destroy(&self.mutex);
assert(retm == 0 or retm == (if (builtin.os == .dragonfly) os.EINVAL else 0));
const retc = c.pthread_cond_destroy(&self.cond);
assert(retc == 0 or retc == (if (builtin.os == .dragonfly) os.EINVAL else 0));
}
pub fn isSet(self: *PosixEvent) bool {
assert(c.pthread_mutex_lock(&self.mutex) == 0);
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
return self.state == IS_SET;
}
pub fn reset(self: *PosixEvent) bool {
assert(c.pthread_mutex_lock(&self.mutex) == 0);
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
const was_set = self.state == IS_SET;
self.state = 0;
return was_set;
}
pub fn set(self: *PosixEvent, auto_reset: bool) bool {
assert(c.pthread_mutex_lock(&self.mutex) == 0);
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
const had_waiter = self.state > IS_SET;
self.state = if (auto_reset) 0 else IS_SET;
if (had_waiter) {
assert(c.pthread_cond_signal(&self.cond) == 0);
}
return had_waiter;
}
pub fn wait(self: *PosixEvent, timeout: ?u64) ResetEvent.WaitError!bool {
assert(c.pthread_mutex_lock(&self.mutex) == 0);
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
if (self.state == IS_SET)
return false;
var ts: os.timespec = undefined;
if (timeout) |timeout_ns| {
var timeout_abs = timeout_ns;
if (comptime std.Target.current.isDarwin()) {
var tv: os.darwin.timeval = undefined;
assert(os.darwin.gettimeofday(&tv, null) == 0);
timeout_abs += @intCast(u64, tv.tv_sec) * time.second;
timeout_abs += @intCast(u64, tv.tv_usec) * time.microsecond;
} else {
os.clock_gettime(os.CLOCK_REALTIME, &ts) catch unreachable;
timeout_abs += @intCast(u64, ts.tv_sec) * time.second;
timeout_abs += @intCast(u64, ts.tv_nsec);
}
ts.tv_sec = @intCast(@typeOf(ts.tv_sec), @divFloor(timeout_abs, time.second));
ts.tv_nsec = @intCast(@typeOf(ts.tv_nsec), @mod(timeout_abs, time.second));
}
var dummy_value: u32 = undefined;
var wait_token = @truncate(u32, @ptrToInt(&dummy_value));
self.state = wait_token;
while (self.state == wait_token) {
const rc = switch (timeout == null) {
true => c.pthread_cond_wait(&self.cond, &self.mutex),
else => c.pthread_cond_timedwait(&self.cond, &self.mutex, &ts),
};
// TODO: rc appears to be the positive error code making os.errno() always return 0 on linux
switch (std.math.max(@as(c_int, os.errno(rc)), rc)) {
0 => {},
os.ETIMEDOUT => return ResetEvent.WaitError.TimedOut,
os.EINVAL => unreachable,
os.EPERM => unreachable,
else => unreachable,
}
}
return true;
}
};
test "std.ResetEvent" {
// TODO
if (builtin.single_threaded)
return error.SkipZigTest;
var event = ResetEvent.init();
defer event.deinit();
// test event setting
testing.expect(event.isSet() == false);
testing.expect(event.set(false) == false);
testing.expect(event.isSet() == true);
// test event resetting
testing.expect(event.reset() == true);
testing.expect(event.isSet() == false);
testing.expect(event.reset() == false);
// test cross thread signaling
const Context = struct {
event: ResetEvent,
value: u128,
fn receiver(self: *@This()) void {
// wait for the sender to notify us with updated value
assert(self.value == 0);
assert((self.event.wait(1 * time.second) catch unreachable) == true);
assert(self.value == 1);
// wait for sender to sleep, then notify it of new value
time.sleep(50 * time.millisecond);
self.value = 2;
assert(self.event.set(false) == true);
}
fn sender(self: *@This()) !void {
// wait for the receiver() to start wait()'ing
time.sleep(50 * time.millisecond);
// update value to 1 and notify the receiver()
assert(self.value == 0);
self.value = 1;
assert(self.event.set(true) == true);
// wait for the receiver to update the value & notify us
assert((try self.event.wait(1 * time.second)) == true);
assert(self.value == 2);
}
};
_ = event.reset();
var context = Context{
.event = event,
.value = 0,
};
var receiver = try std.Thread.spawn(&context, Context.receiver);
defer receiver.wait();
try context.sender();
}