mirror of
https://github.com/ziglang/zig.git
synced 2024-11-27 23:52:31 +00:00
0556a2ba53
Finishes cleanups that I started in other commits in this branch. * Use common.linkage for all exports instead of redoing the logic in each file. * Remove pointless `@setRuntimeSafety` calls. * Avoid redundantly exporting multiple versions of functions. For example, if PPC wants `ceilf128` then don't also export `ceilq`; similarly if ARM wants `__aeabi_ddiv` then don't also export `__divdf3`. * Use `inline` for helper functions instead of making inline calls at callsites.
389 lines
12 KiB
Zig
389 lines
12 KiB
Zig
const builtin = @import("builtin");
|
|
const std = @import("std");
|
|
const math = std.math;
|
|
const assert = std.debug.assert;
|
|
const arch = builtin.cpu.arch;
|
|
const common = @import("common.zig");
|
|
const normalize = common.normalize;
|
|
|
|
pub const panic = common.panic;
|
|
|
|
comptime {
|
|
@export(__fmodh, .{ .name = "__fmodh", .linkage = common.linkage });
|
|
@export(fmodf, .{ .name = "fmodf", .linkage = common.linkage });
|
|
@export(fmod, .{ .name = "fmod", .linkage = common.linkage });
|
|
@export(__fmodx, .{ .name = "__fmodx", .linkage = common.linkage });
|
|
const fmodq_sym_name = if (common.want_ppc_abi) "fmodf128" else "fmodq";
|
|
@export(fmodq, .{ .name = fmodq_sym_name, .linkage = common.linkage });
|
|
@export(fmodl, .{ .name = "fmodl", .linkage = common.linkage });
|
|
}
|
|
|
|
pub fn __fmodh(x: f16, y: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, fmodf(x, y));
|
|
}
|
|
|
|
pub fn fmodf(x: f32, y: f32) callconv(.C) f32 {
|
|
return generic_fmod(f32, x, y);
|
|
}
|
|
|
|
pub fn fmod(x: f64, y: f64) callconv(.C) f64 {
|
|
return generic_fmod(f64, x, y);
|
|
}
|
|
|
|
/// fmodx - floating modulo large, returns the remainder of division for f80 types
|
|
/// Logic and flow heavily inspired by MUSL fmodl for 113 mantissa digits
|
|
pub fn __fmodx(a: f80, b: f80) callconv(.C) f80 {
|
|
const T = f80;
|
|
const Z = std.meta.Int(.unsigned, @bitSizeOf(T));
|
|
|
|
const significandBits = math.floatMantissaBits(T);
|
|
const fractionalBits = math.floatFractionalBits(T);
|
|
const exponentBits = math.floatExponentBits(T);
|
|
|
|
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
|
|
const maxExponent = ((1 << exponentBits) - 1);
|
|
|
|
var aRep = @bitCast(Z, a);
|
|
var bRep = @bitCast(Z, b);
|
|
|
|
const signA = aRep & signBit;
|
|
var expA = @intCast(i32, (@bitCast(Z, a) >> significandBits) & maxExponent);
|
|
var expB = @intCast(i32, (@bitCast(Z, b) >> significandBits) & maxExponent);
|
|
|
|
// There are 3 cases where the answer is undefined, check for:
|
|
// - fmodx(val, 0)
|
|
// - fmodx(val, NaN)
|
|
// - fmodx(inf, val)
|
|
// The sign on checked values does not matter.
|
|
// Doing (a * b) / (a * b) procudes undefined results
|
|
// because the three cases always produce undefined calculations:
|
|
// - 0 / 0
|
|
// - val * NaN
|
|
// - inf / inf
|
|
if (b == 0 or math.isNan(b) or expA == maxExponent) {
|
|
return (a * b) / (a * b);
|
|
}
|
|
|
|
// Remove the sign from both
|
|
aRep &= ~signBit;
|
|
bRep &= ~signBit;
|
|
if (aRep <= bRep) {
|
|
if (aRep == bRep) {
|
|
return 0 * a;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if (expA == 0) expA = normalize(f80, &aRep);
|
|
if (expB == 0) expB = normalize(f80, &bRep);
|
|
|
|
var highA: u64 = 0;
|
|
var highB: u64 = 0;
|
|
var lowA: u64 = @truncate(u64, aRep);
|
|
var lowB: u64 = @truncate(u64, bRep);
|
|
|
|
while (expA > expB) : (expA -= 1) {
|
|
var high = highA -% highB;
|
|
var low = lowA -% lowB;
|
|
if (lowA < lowB) {
|
|
high -%= 1;
|
|
}
|
|
if (high >> 63 == 0) {
|
|
if ((high | low) == 0) {
|
|
return 0 * a;
|
|
}
|
|
highA = 2 *% high + (low >> 63);
|
|
lowA = 2 *% low;
|
|
} else {
|
|
highA = 2 *% highA + (lowA >> 63);
|
|
lowA = 2 *% lowA;
|
|
}
|
|
}
|
|
|
|
var high = highA -% highB;
|
|
var low = lowA -% lowB;
|
|
if (lowA < lowB) {
|
|
high -%= 1;
|
|
}
|
|
if (high >> 63 == 0) {
|
|
if ((high | low) == 0) {
|
|
return 0 * a;
|
|
}
|
|
highA = high;
|
|
lowA = low;
|
|
}
|
|
|
|
while ((lowA >> fractionalBits) == 0) {
|
|
lowA = 2 *% lowA;
|
|
expA = expA - 1;
|
|
}
|
|
|
|
// Combine the exponent with the sign and significand, normalize if happened to be denormalized
|
|
if (expA < -fractionalBits) {
|
|
return @bitCast(T, signA);
|
|
} else if (expA <= 0) {
|
|
return @bitCast(T, (lowA >> @intCast(math.Log2Int(u64), 1 - expA)) | signA);
|
|
} else {
|
|
return @bitCast(T, lowA | (@as(Z, @intCast(u16, expA)) << significandBits) | signA);
|
|
}
|
|
}
|
|
|
|
/// fmodq - floating modulo large, returns the remainder of division for f128 types
|
|
/// Logic and flow heavily inspired by MUSL fmodl for 113 mantissa digits
|
|
pub fn fmodq(a: f128, b: f128) callconv(.C) f128 {
|
|
var amod = a;
|
|
var bmod = b;
|
|
const aPtr_u64 = @ptrCast([*]u64, &amod);
|
|
const bPtr_u64 = @ptrCast([*]u64, &bmod);
|
|
const aPtr_u16 = @ptrCast([*]u16, &amod);
|
|
const bPtr_u16 = @ptrCast([*]u16, &bmod);
|
|
|
|
const exp_and_sign_index = comptime switch (builtin.target.cpu.arch.endian()) {
|
|
.Little => 7,
|
|
.Big => 0,
|
|
};
|
|
const low_index = comptime switch (builtin.target.cpu.arch.endian()) {
|
|
.Little => 0,
|
|
.Big => 1,
|
|
};
|
|
const high_index = comptime switch (builtin.target.cpu.arch.endian()) {
|
|
.Little => 1,
|
|
.Big => 0,
|
|
};
|
|
|
|
const signA = aPtr_u16[exp_and_sign_index] & 0x8000;
|
|
var expA = @intCast(i32, (aPtr_u16[exp_and_sign_index] & 0x7fff));
|
|
var expB = @intCast(i32, (bPtr_u16[exp_and_sign_index] & 0x7fff));
|
|
|
|
// There are 3 cases where the answer is undefined, check for:
|
|
// - fmodq(val, 0)
|
|
// - fmodq(val, NaN)
|
|
// - fmodq(inf, val)
|
|
// The sign on checked values does not matter.
|
|
// Doing (a * b) / (a * b) procudes undefined results
|
|
// because the three cases always produce undefined calculations:
|
|
// - 0 / 0
|
|
// - val * NaN
|
|
// - inf / inf
|
|
if (b == 0 or std.math.isNan(b) or expA == 0x7fff) {
|
|
return (a * b) / (a * b);
|
|
}
|
|
|
|
// Remove the sign from both
|
|
aPtr_u16[exp_and_sign_index] = @bitCast(u16, @intCast(i16, expA));
|
|
bPtr_u16[exp_and_sign_index] = @bitCast(u16, @intCast(i16, expB));
|
|
if (amod <= bmod) {
|
|
if (amod == bmod) {
|
|
return 0 * a;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
if (expA == 0) {
|
|
amod *= 0x1p120;
|
|
expA = @as(i32, aPtr_u16[exp_and_sign_index]) - 120;
|
|
}
|
|
|
|
if (expB == 0) {
|
|
bmod *= 0x1p120;
|
|
expB = @as(i32, bPtr_u16[exp_and_sign_index]) - 120;
|
|
}
|
|
|
|
// OR in extra non-stored mantissa digit
|
|
var highA: u64 = (aPtr_u64[high_index] & (std.math.maxInt(u64) >> 16)) | 1 << 48;
|
|
var highB: u64 = (bPtr_u64[high_index] & (std.math.maxInt(u64) >> 16)) | 1 << 48;
|
|
var lowA: u64 = aPtr_u64[low_index];
|
|
var lowB: u64 = bPtr_u64[low_index];
|
|
|
|
while (expA > expB) : (expA -= 1) {
|
|
var high = highA -% highB;
|
|
var low = lowA -% lowB;
|
|
if (lowA < lowB) {
|
|
high -%= 1;
|
|
}
|
|
if (high >> 63 == 0) {
|
|
if ((high | low) == 0) {
|
|
return 0 * a;
|
|
}
|
|
highA = 2 *% high + (low >> 63);
|
|
lowA = 2 *% low;
|
|
} else {
|
|
highA = 2 *% highA + (lowA >> 63);
|
|
lowA = 2 *% lowA;
|
|
}
|
|
}
|
|
|
|
var high = highA -% highB;
|
|
var low = lowA -% lowB;
|
|
if (lowA < lowB) {
|
|
high -= 1;
|
|
}
|
|
if (high >> 63 == 0) {
|
|
if ((high | low) == 0) {
|
|
return 0 * a;
|
|
}
|
|
highA = high;
|
|
lowA = low;
|
|
}
|
|
|
|
while (highA >> 48 == 0) {
|
|
highA = 2 *% highA + (lowA >> 63);
|
|
lowA = 2 *% lowA;
|
|
expA = expA - 1;
|
|
}
|
|
|
|
// Overwrite the current amod with the values in highA and lowA
|
|
aPtr_u64[high_index] = highA;
|
|
aPtr_u64[low_index] = lowA;
|
|
|
|
// Combine the exponent with the sign, normalize if happend to be denormalized
|
|
if (expA <= 0) {
|
|
aPtr_u16[exp_and_sign_index] = @truncate(u16, @bitCast(u32, (expA +% 120))) | signA;
|
|
amod *= 0x1p-120;
|
|
} else {
|
|
aPtr_u16[exp_and_sign_index] = @truncate(u16, @bitCast(u32, expA)) | signA;
|
|
}
|
|
|
|
return amod;
|
|
}
|
|
|
|
pub fn fmodl(a: c_longdouble, b: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __fmodh(a, b),
|
|
32 => return fmodf(a, b),
|
|
64 => return fmod(a, b),
|
|
80 => return __fmodx(a, b),
|
|
128 => return fmodq(a, b),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
inline fn generic_fmod(comptime T: type, x: T, y: T) T {
|
|
const bits = @typeInfo(T).Float.bits;
|
|
const uint = std.meta.Int(.unsigned, bits);
|
|
const log2uint = math.Log2Int(uint);
|
|
comptime assert(T == f32 or T == f64);
|
|
const digits = if (T == f32) 23 else 52;
|
|
const exp_bits = if (T == f32) 9 else 12;
|
|
const bits_minus_1 = bits - 1;
|
|
const mask = if (T == f32) 0xff else 0x7ff;
|
|
var ux = @bitCast(uint, x);
|
|
var uy = @bitCast(uint, y);
|
|
var ex = @intCast(i32, (ux >> digits) & mask);
|
|
var ey = @intCast(i32, (uy >> digits) & mask);
|
|
const sx = if (T == f32) @intCast(u32, ux & 0x80000000) else @intCast(i32, ux >> bits_minus_1);
|
|
var i: uint = undefined;
|
|
|
|
if (uy << 1 == 0 or math.isNan(@bitCast(T, uy)) or ex == mask)
|
|
return (x * y) / (x * y);
|
|
|
|
if (ux << 1 <= uy << 1) {
|
|
if (ux << 1 == uy << 1)
|
|
return 0 * x;
|
|
return x;
|
|
}
|
|
|
|
// normalize x and y
|
|
if (ex == 0) {
|
|
i = ux << exp_bits;
|
|
while (i >> bits_minus_1 == 0) : ({
|
|
ex -= 1;
|
|
i <<= 1;
|
|
}) {}
|
|
ux <<= @intCast(log2uint, @bitCast(u32, -ex + 1));
|
|
} else {
|
|
ux &= math.maxInt(uint) >> exp_bits;
|
|
ux |= 1 << digits;
|
|
}
|
|
if (ey == 0) {
|
|
i = uy << exp_bits;
|
|
while (i >> bits_minus_1 == 0) : ({
|
|
ey -= 1;
|
|
i <<= 1;
|
|
}) {}
|
|
uy <<= @intCast(log2uint, @bitCast(u32, -ey + 1));
|
|
} else {
|
|
uy &= math.maxInt(uint) >> exp_bits;
|
|
uy |= 1 << digits;
|
|
}
|
|
|
|
// x mod y
|
|
while (ex > ey) : (ex -= 1) {
|
|
i = ux -% uy;
|
|
if (i >> bits_minus_1 == 0) {
|
|
if (i == 0)
|
|
return 0 * x;
|
|
ux = i;
|
|
}
|
|
ux <<= 1;
|
|
}
|
|
i = ux -% uy;
|
|
if (i >> bits_minus_1 == 0) {
|
|
if (i == 0)
|
|
return 0 * x;
|
|
ux = i;
|
|
}
|
|
while (ux >> digits == 0) : ({
|
|
ux <<= 1;
|
|
ex -= 1;
|
|
}) {}
|
|
|
|
// scale result up
|
|
if (ex > 0) {
|
|
ux -%= 1 << digits;
|
|
ux |= @as(uint, @bitCast(u32, ex)) << digits;
|
|
} else {
|
|
ux >>= @intCast(log2uint, @bitCast(u32, -ex + 1));
|
|
}
|
|
if (T == f32) {
|
|
ux |= sx;
|
|
} else {
|
|
ux |= @intCast(uint, sx) << bits_minus_1;
|
|
}
|
|
return @bitCast(T, ux);
|
|
}
|
|
|
|
test "fmodf" {
|
|
const nan_val = math.nan(f32);
|
|
const inf_val = math.inf(f32);
|
|
|
|
try std.testing.expect(math.isNan(fmodf(nan_val, 1.0)));
|
|
try std.testing.expect(math.isNan(fmodf(1.0, nan_val)));
|
|
try std.testing.expect(math.isNan(fmodf(inf_val, 1.0)));
|
|
try std.testing.expect(math.isNan(fmodf(0.0, 0.0)));
|
|
try std.testing.expect(math.isNan(fmodf(1.0, 0.0)));
|
|
|
|
try std.testing.expectEqual(@as(f32, 0.0), fmodf(0.0, 2.0));
|
|
try std.testing.expectEqual(@as(f32, -0.0), fmodf(-0.0, 2.0));
|
|
|
|
try std.testing.expectEqual(@as(f32, -2.0), fmodf(-32.0, 10.0));
|
|
try std.testing.expectEqual(@as(f32, -2.0), fmodf(-32.0, -10.0));
|
|
try std.testing.expectEqual(@as(f32, 2.0), fmodf(32.0, 10.0));
|
|
try std.testing.expectEqual(@as(f32, 2.0), fmodf(32.0, -10.0));
|
|
}
|
|
|
|
test "fmod" {
|
|
const nan_val = math.nan(f64);
|
|
const inf_val = math.inf(f64);
|
|
|
|
try std.testing.expect(math.isNan(fmod(nan_val, 1.0)));
|
|
try std.testing.expect(math.isNan(fmod(1.0, nan_val)));
|
|
try std.testing.expect(math.isNan(fmod(inf_val, 1.0)));
|
|
try std.testing.expect(math.isNan(fmod(0.0, 0.0)));
|
|
try std.testing.expect(math.isNan(fmod(1.0, 0.0)));
|
|
|
|
try std.testing.expectEqual(@as(f64, 0.0), fmod(0.0, 2.0));
|
|
try std.testing.expectEqual(@as(f64, -0.0), fmod(-0.0, 2.0));
|
|
|
|
try std.testing.expectEqual(@as(f64, -2.0), fmod(-32.0, 10.0));
|
|
try std.testing.expectEqual(@as(f64, -2.0), fmod(-32.0, -10.0));
|
|
try std.testing.expectEqual(@as(f64, 2.0), fmod(32.0, 10.0));
|
|
try std.testing.expectEqual(@as(f64, 2.0), fmod(32.0, -10.0));
|
|
}
|
|
|
|
test {
|
|
_ = @import("fmodq_test.zig");
|
|
_ = @import("fmodx_test.zig");
|
|
}
|