mirror of
https://github.com/ziglang/zig.git
synced 2024-11-27 23:52:31 +00:00
c99c085d70
The purpose of this branch is to switch to using an object file for each independent function, in order to make linking simpler - instead of relying on `-ffunction-sections` and `--gc-sections`, which involves the linker doing the work of linking everything and then undoing work via garbage collection, this will allow the linker to only include the compilation units that are depended on in the first place. This commit makes progress towards that goal.
204 lines
8.2 KiB
Zig
204 lines
8.2 KiB
Zig
const std = @import("std");
|
|
const math = std.math;
|
|
const builtin = @import("builtin");
|
|
const common = @import("./common.zig");
|
|
|
|
/// Ported from:
|
|
/// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc
|
|
pub inline fn mulf3(comptime T: type, a: T, b: T) T {
|
|
@setRuntimeSafety(builtin.is_test);
|
|
const typeWidth = @typeInfo(T).Float.bits;
|
|
const significandBits = math.floatMantissaBits(T);
|
|
const fractionalBits = math.floatFractionalBits(T);
|
|
const exponentBits = math.floatExponentBits(T);
|
|
|
|
const Z = std.meta.Int(.unsigned, typeWidth);
|
|
|
|
// ZSignificand is large enough to contain the significand, including an explicit integer bit
|
|
const ZSignificand = PowerOfTwoSignificandZ(T);
|
|
const ZSignificandBits = @typeInfo(ZSignificand).Int.bits;
|
|
|
|
const roundBit = (1 << (ZSignificandBits - 1));
|
|
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
|
|
const maxExponent = ((1 << exponentBits) - 1);
|
|
const exponentBias = (maxExponent >> 1);
|
|
|
|
const integerBit = (@as(ZSignificand, 1) << fractionalBits);
|
|
const quietBit = integerBit >> 1;
|
|
const significandMask = (@as(Z, 1) << significandBits) - 1;
|
|
|
|
const absMask = signBit - 1;
|
|
const qnanRep = @bitCast(Z, math.nan(T)) | quietBit;
|
|
const infRep = @bitCast(Z, math.inf(T));
|
|
const minNormalRep = @bitCast(Z, math.floatMin(T));
|
|
|
|
const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent);
|
|
const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent);
|
|
const productSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit;
|
|
|
|
var aSignificand: ZSignificand = @intCast(ZSignificand, @bitCast(Z, a) & significandMask);
|
|
var bSignificand: ZSignificand = @intCast(ZSignificand, @bitCast(Z, b) & significandMask);
|
|
var scale: i32 = 0;
|
|
|
|
// Detect if a or b is zero, denormal, infinity, or NaN.
|
|
if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
|
|
const aAbs: Z = @bitCast(Z, a) & absMask;
|
|
const bAbs: Z = @bitCast(Z, b) & absMask;
|
|
|
|
// NaN * anything = qNaN
|
|
if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit);
|
|
// anything * NaN = qNaN
|
|
if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit);
|
|
|
|
if (aAbs == infRep) {
|
|
// infinity * non-zero = +/- infinity
|
|
if (bAbs != 0) {
|
|
return @bitCast(T, aAbs | productSign);
|
|
} else {
|
|
// infinity * zero = NaN
|
|
return @bitCast(T, qnanRep);
|
|
}
|
|
}
|
|
|
|
if (bAbs == infRep) {
|
|
//? non-zero * infinity = +/- infinity
|
|
if (aAbs != 0) {
|
|
return @bitCast(T, bAbs | productSign);
|
|
} else {
|
|
// zero * infinity = NaN
|
|
return @bitCast(T, qnanRep);
|
|
}
|
|
}
|
|
|
|
// zero * anything = +/- zero
|
|
if (aAbs == 0) return @bitCast(T, productSign);
|
|
// anything * zero = +/- zero
|
|
if (bAbs == 0) return @bitCast(T, productSign);
|
|
|
|
// one or both of a or b is denormal, the other (if applicable) is a
|
|
// normal number. Renormalize one or both of a and b, and set scale to
|
|
// include the necessary exponent adjustment.
|
|
if (aAbs < minNormalRep) scale += normalize(T, &aSignificand);
|
|
if (bAbs < minNormalRep) scale += normalize(T, &bSignificand);
|
|
}
|
|
|
|
// Or in the implicit significand bit. (If we fell through from the
|
|
// denormal path it was already set by normalize( ), but setting it twice
|
|
// won't hurt anything.)
|
|
aSignificand |= integerBit;
|
|
bSignificand |= integerBit;
|
|
|
|
// Get the significand of a*b. Before multiplying the significands, shift
|
|
// one of them left to left-align it in the field. Thus, the product will
|
|
// have (exponentBits + 2) integral digits, all but two of which must be
|
|
// zero. Normalizing this result is just a conditional left-shift by one
|
|
// and bumping the exponent accordingly.
|
|
var productHi: ZSignificand = undefined;
|
|
var productLo: ZSignificand = undefined;
|
|
const left_align_shift = ZSignificandBits - fractionalBits - 1;
|
|
common.wideMultiply(ZSignificand, aSignificand, bSignificand << left_align_shift, &productHi, &productLo);
|
|
|
|
var productExponent: i32 = @intCast(i32, aExponent + bExponent) - exponentBias + scale;
|
|
|
|
// Normalize the significand, adjust exponent if needed.
|
|
if ((productHi & integerBit) != 0) {
|
|
productExponent +%= 1;
|
|
} else {
|
|
productHi = (productHi << 1) | (productLo >> (ZSignificandBits - 1));
|
|
productLo = productLo << 1;
|
|
}
|
|
|
|
// If we have overflowed the type, return +/- infinity.
|
|
if (productExponent >= maxExponent) return @bitCast(T, infRep | productSign);
|
|
|
|
var result: Z = undefined;
|
|
if (productExponent <= 0) {
|
|
// Result is denormal before rounding
|
|
//
|
|
// If the result is so small that it just underflows to zero, return
|
|
// a zero of the appropriate sign. Mathematically there is no need to
|
|
// handle this case separately, but we make it a special case to
|
|
// simplify the shift logic.
|
|
const shift: u32 = @truncate(u32, @as(Z, 1) -% @bitCast(u32, productExponent));
|
|
if (shift >= ZSignificandBits) return @bitCast(T, productSign);
|
|
|
|
// Otherwise, shift the significand of the result so that the round
|
|
// bit is the high bit of productLo.
|
|
const sticky = wideShrWithTruncation(ZSignificand, &productHi, &productLo, shift);
|
|
productLo |= @boolToInt(sticky);
|
|
result = productHi;
|
|
|
|
// We include the integer bit so that rounding will carry to the exponent,
|
|
// but it will be removed later if the result is still denormal
|
|
if (significandBits != fractionalBits) result |= integerBit;
|
|
} else {
|
|
// Result is normal before rounding; insert the exponent.
|
|
result = productHi & significandMask;
|
|
result |= @intCast(Z, productExponent) << significandBits;
|
|
}
|
|
|
|
// Final rounding. The final result may overflow to infinity, or underflow
|
|
// to zero, but those are the correct results in those cases. We use the
|
|
// default IEEE-754 round-to-nearest, ties-to-even rounding mode.
|
|
if (productLo > roundBit) result +%= 1;
|
|
if (productLo == roundBit) result +%= result & 1;
|
|
|
|
// Restore any explicit integer bit, if it was rounded off
|
|
if (significandBits != fractionalBits) {
|
|
if ((result >> significandBits) != 0) {
|
|
result |= integerBit;
|
|
} else {
|
|
result &= ~integerBit;
|
|
}
|
|
}
|
|
|
|
// Insert the sign of the result:
|
|
result |= productSign;
|
|
|
|
return @bitCast(T, result);
|
|
}
|
|
|
|
/// Returns `true` if the right shift is inexact (i.e. any bit shifted out is non-zero)
|
|
///
|
|
/// This is analogous to an shr version of `@shlWithOverflow`
|
|
fn wideShrWithTruncation(comptime Z: type, hi: *Z, lo: *Z, count: u32) bool {
|
|
@setRuntimeSafety(builtin.is_test);
|
|
const typeWidth = @typeInfo(Z).Int.bits;
|
|
const S = math.Log2Int(Z);
|
|
var inexact = false;
|
|
if (count < typeWidth) {
|
|
inexact = (lo.* << @intCast(S, typeWidth -% count)) != 0;
|
|
lo.* = (hi.* << @intCast(S, typeWidth -% count)) | (lo.* >> @intCast(S, count));
|
|
hi.* = hi.* >> @intCast(S, count);
|
|
} else if (count < 2 * typeWidth) {
|
|
inexact = (hi.* << @intCast(S, 2 * typeWidth -% count) | lo.*) != 0;
|
|
lo.* = hi.* >> @intCast(S, count -% typeWidth);
|
|
hi.* = 0;
|
|
} else {
|
|
inexact = (hi.* | lo.*) != 0;
|
|
lo.* = 0;
|
|
hi.* = 0;
|
|
}
|
|
return inexact;
|
|
}
|
|
|
|
fn normalize(comptime T: type, significand: *PowerOfTwoSignificandZ(T)) i32 {
|
|
const Z = PowerOfTwoSignificandZ(T);
|
|
const integerBit = @as(Z, 1) << math.floatFractionalBits(T);
|
|
|
|
const shift = @clz(Z, significand.*) - @clz(Z, integerBit);
|
|
significand.* <<= @intCast(math.Log2Int(Z), shift);
|
|
return @as(i32, 1) - shift;
|
|
}
|
|
|
|
/// Returns a power-of-two integer type that is large enough to contain
|
|
/// the significand of T, including an explicit integer bit
|
|
fn PowerOfTwoSignificandZ(comptime T: type) type {
|
|
const bits = math.ceilPowerOfTwoAssert(u16, math.floatFractionalBits(T) + 1);
|
|
return std.meta.Int(.unsigned, bits);
|
|
}
|
|
|
|
test {
|
|
_ = @import("mulf3_test.zig");
|
|
}
|