zig/lib/std/testing.zig
Wooster ad7a09d95a std.testing.expectEqualSlices: some improvements
This mainly replaces ChunkIterator with std.mem.window and also
prints \n, \r, \t using Unicode symbols instead of periods because
they're common non-printable characters.
This same code exists in std.debug.hexdump.
At some point maybe this code could be exposed through a public
function. Then we could reuse the code in both places.
2024-01-08 00:13:21 -07:00

1139 lines
43 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const math = std.math;
pub const FailingAllocator = @import("testing/failing_allocator.zig").FailingAllocator;
/// This should only be used in temporary test programs.
pub const allocator = allocator_instance.allocator();
pub var allocator_instance = b: {
if (!builtin.is_test)
@compileError("Cannot use testing allocator outside of test block");
break :b std.heap.GeneralPurposeAllocator(.{}){};
};
pub const failing_allocator = failing_allocator_instance.allocator();
pub var failing_allocator_instance = FailingAllocator.init(base_allocator_instance.allocator(), .{ .fail_index = 0 });
pub var base_allocator_instance = std.heap.FixedBufferAllocator.init("");
/// TODO https://github.com/ziglang/zig/issues/5738
pub var log_level = std.log.Level.warn;
// Disable printing in tests for simple backends.
pub const backend_can_print = builtin.zig_backend != .stage2_spirv64;
fn print(comptime fmt: []const u8, args: anytype) void {
if (@inComptime()) {
@compileError(std.fmt.comptimePrint(fmt, args));
} else if (backend_can_print) {
std.debug.print(fmt, args);
}
}
/// This function is intended to be used only in tests. It prints diagnostics to stderr
/// and then returns a test failure error when actual_error_union is not expected_error.
pub fn expectError(expected_error: anyerror, actual_error_union: anytype) !void {
if (actual_error_union) |actual_payload| {
print("expected error.{s}, found {any}\n", .{ @errorName(expected_error), actual_payload });
return error.TestUnexpectedError;
} else |actual_error| {
if (expected_error != actual_error) {
print("expected error.{s}, found error.{s}\n", .{
@errorName(expected_error),
@errorName(actual_error),
});
return error.TestExpectedError;
}
}
}
/// This function is intended to be used only in tests. When the two values are not
/// equal, prints diagnostics to stderr to show exactly how they are not equal,
/// then returns a test failure error.
/// `actual` and `expected` are coerced to a common type using peer type resolution.
pub inline fn expectEqual(expected: anytype, actual: anytype) !void {
const T = @TypeOf(expected, actual);
return expectEqualInner(T, expected, actual);
}
fn expectEqualInner(comptime T: type, expected: T, actual: T) !void {
switch (@typeInfo(@TypeOf(actual))) {
.NoReturn,
.Opaque,
.Frame,
.AnyFrame,
=> @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"),
.Undefined,
.Null,
.Void,
=> return,
.Type => {
if (actual != expected) {
print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) });
return error.TestExpectedEqual;
}
},
.Bool,
.Int,
.Float,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Enum,
.Fn,
.ErrorSet,
=> {
if (actual != expected) {
print("expected {}, found {}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.Pointer => |pointer| {
switch (pointer.size) {
.One, .Many, .C => {
if (actual != expected) {
print("expected {*}, found {*}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.Slice => {
if (actual.ptr != expected.ptr) {
print("expected slice ptr {*}, found {*}\n", .{ expected.ptr, actual.ptr });
return error.TestExpectedEqual;
}
if (actual.len != expected.len) {
print("expected slice len {}, found {}\n", .{ expected.len, actual.len });
return error.TestExpectedEqual;
}
},
}
},
.Array => |array| try expectEqualSlices(array.child, &expected, &actual),
.Vector => |info| {
var i: usize = 0;
while (i < info.len) : (i += 1) {
if (!std.meta.eql(expected[i], actual[i])) {
print("index {} incorrect. expected {}, found {}\n", .{
i, expected[i], actual[i],
});
return error.TestExpectedEqual;
}
}
},
.Struct => |structType| {
inline for (structType.fields) |field| {
try expectEqual(@field(expected, field.name), @field(actual, field.name));
}
},
.Union => |union_info| {
if (union_info.tag_type == null) {
@compileError("Unable to compare untagged union values");
}
const Tag = std.meta.Tag(@TypeOf(expected));
const expectedTag = @as(Tag, expected);
const actualTag = @as(Tag, actual);
try expectEqual(expectedTag, actualTag);
// we only reach this loop if the tags are equal
inline for (std.meta.fields(@TypeOf(actual))) |fld| {
if (std.mem.eql(u8, fld.name, @tagName(actualTag))) {
try expectEqual(@field(expected, fld.name), @field(actual, fld.name));
return;
}
}
// we iterate over *all* union fields
// => we should never get here as the loop above is
// including all possible values.
unreachable;
},
.Optional => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqual(expected_payload, actual_payload);
} else {
print("expected {any}, found null\n", .{expected_payload});
return error.TestExpectedEqual;
}
} else {
if (actual) |actual_payload| {
print("expected null, found {any}\n", .{actual_payload});
return error.TestExpectedEqual;
}
}
},
.ErrorUnion => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqual(expected_payload, actual_payload);
} else |actual_err| {
print("expected {any}, found {}\n", .{ expected_payload, actual_err });
return error.TestExpectedEqual;
}
} else |expected_err| {
if (actual) |actual_payload| {
print("expected {}, found {any}\n", .{ expected_err, actual_payload });
return error.TestExpectedEqual;
} else |actual_err| {
try expectEqual(expected_err, actual_err);
}
}
},
}
}
test "expectEqual.union(enum)" {
const T = union(enum) {
a: i32,
b: f32,
};
const a10 = T{ .a = 10 };
try expectEqual(a10, a10);
}
/// This function is intended to be used only in tests. When the formatted result of the template
/// and its arguments does not equal the expected text, it prints diagnostics to stderr to show how
/// they are not equal, then returns an error.
pub fn expectFmt(expected: []const u8, comptime template: []const u8, args: anytype) !void {
const result = try std.fmt.allocPrint(allocator, template, args);
defer allocator.free(result);
if (std.mem.eql(u8, result, expected)) return;
print("\n====== expected this output: =========\n", .{});
print("{s}", .{expected});
print("\n======== instead found this: =========\n", .{});
print("{s}", .{result});
print("\n======================================\n", .{});
return error.TestExpectedFmt;
}
/// This function is intended to be used only in tests. When the actual value is
/// not approximately equal to the expected value, prints diagnostics to stderr
/// to show exactly how they are not equal, then returns a test failure error.
/// See `math.approxEqAbs` for more information on the tolerance parameter.
/// The types must be floating-point.
/// `actual` and `expected` are coerced to a common type using peer type resolution.
pub inline fn expectApproxEqAbs(expected: anytype, actual: anytype, tolerance: anytype) !void {
const T = @TypeOf(expected, actual, tolerance);
return expectApproxEqAbsInner(T, expected, actual, tolerance);
}
fn expectApproxEqAbsInner(comptime T: type, expected: T, actual: T, tolerance: T) !void {
switch (@typeInfo(T)) {
.Float => if (!math.approxEqAbs(T, expected, actual, tolerance)) {
print("actual {}, not within absolute tolerance {} of expected {}\n", .{ actual, tolerance, expected });
return error.TestExpectedApproxEqAbs;
},
.ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),
else => @compileError("Unable to compare non floating point values"),
}
}
test "expectApproxEqAbs" {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const pos_x: T = 12.0;
const pos_y: T = 12.06;
const neg_x: T = -12.0;
const neg_y: T = -12.06;
try expectApproxEqAbs(pos_x, pos_y, 0.1);
try expectApproxEqAbs(neg_x, neg_y, 0.1);
}
}
/// This function is intended to be used only in tests. When the actual value is
/// not approximately equal to the expected value, prints diagnostics to stderr
/// to show exactly how they are not equal, then returns a test failure error.
/// See `math.approxEqRel` for more information on the tolerance parameter.
/// The types must be floating-point.
/// `actual` and `expected` are coerced to a common type using peer type resolution.
pub inline fn expectApproxEqRel(expected: anytype, actual: anytype, tolerance: anytype) !void {
const T = @TypeOf(expected, actual, tolerance);
return expectApproxEqRelInner(T, expected, actual, tolerance);
}
fn expectApproxEqRelInner(comptime T: type, expected: T, actual: T, tolerance: T) !void {
switch (@typeInfo(T)) {
.Float => if (!math.approxEqRel(T, expected, actual, tolerance)) {
print("actual {}, not within relative tolerance {} of expected {}\n", .{ actual, tolerance, expected });
return error.TestExpectedApproxEqRel;
},
.ComptimeFloat => @compileError("Cannot approximately compare two comptime_float values"),
else => @compileError("Unable to compare non floating point values"),
}
}
test "expectApproxEqRel" {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const eps_value = comptime math.floatEps(T);
const sqrt_eps_value = comptime @sqrt(eps_value);
const pos_x: T = 12.0;
const pos_y: T = pos_x + 2 * eps_value;
const neg_x: T = -12.0;
const neg_y: T = neg_x - 2 * eps_value;
try expectApproxEqRel(pos_x, pos_y, sqrt_eps_value);
try expectApproxEqRel(neg_x, neg_y, sqrt_eps_value);
}
}
/// This function is intended to be used only in tests. When the two slices are not
/// equal, prints diagnostics to stderr to show exactly how they are not equal (with
/// the differences highlighted in red), then returns a test failure error.
/// The colorized output is optional and controlled by the return of `std.io.tty.detectConfig()`.
/// If your inputs are UTF-8 encoded strings, consider calling `expectEqualStrings` instead.
pub fn expectEqualSlices(comptime T: type, expected: []const T, actual: []const T) !void {
if (expected.ptr == actual.ptr and expected.len == actual.len) {
return;
}
const diff_index: usize = diff_index: {
const shortest = @min(expected.len, actual.len);
var index: usize = 0;
while (index < shortest) : (index += 1) {
if (!std.meta.eql(actual[index], expected[index])) break :diff_index index;
}
break :diff_index if (expected.len == actual.len) return else shortest;
};
if (!backend_can_print) {
return error.TestExpectedEqual;
}
print("slices differ. first difference occurs at index {d} (0x{X})\n", .{ diff_index, diff_index });
// TODO: Should this be configurable by the caller?
const max_lines: usize = 16;
const max_window_size: usize = if (T == u8) max_lines * 16 else max_lines;
// Print a maximum of max_window_size items of each input, starting just before the
// first difference to give a bit of context.
var window_start: usize = 0;
if (@max(actual.len, expected.len) > max_window_size) {
const alignment = if (T == u8) 16 else 2;
window_start = std.mem.alignBackward(usize, diff_index - @min(diff_index, alignment), alignment);
}
const expected_window = expected[window_start..@min(expected.len, window_start + max_window_size)];
const expected_truncated = window_start + expected_window.len < expected.len;
const actual_window = actual[window_start..@min(actual.len, window_start + max_window_size)];
const actual_truncated = window_start + actual_window.len < actual.len;
const stderr = std.io.getStdErr();
const ttyconf = std.io.tty.detectConfig(stderr);
var differ = if (T == u8) BytesDiffer{
.expected = expected_window,
.actual = actual_window,
.ttyconf = ttyconf,
} else SliceDiffer(T){
.start_index = window_start,
.expected = expected_window,
.actual = actual_window,
.ttyconf = ttyconf,
};
// Print indexes as hex for slices of u8 since it's more likely to be binary data where
// that is usually useful.
const index_fmt = if (T == u8) "0x{X}" else "{}";
print("\n============ expected this output: ============= len: {} (0x{X})\n\n", .{ expected.len, expected.len });
if (window_start > 0) {
if (T == u8) {
print("... truncated, start index: " ++ index_fmt ++ " ...\n", .{window_start});
} else {
print("... truncated ...\n", .{});
}
}
differ.write(stderr.writer()) catch {};
if (expected_truncated) {
const end_offset = window_start + expected_window.len;
const num_missing_items = expected.len - (window_start + expected_window.len);
if (T == u8) {
print("... truncated, indexes [" ++ index_fmt ++ "..] not shown, remaining bytes: " ++ index_fmt ++ " ...\n", .{ end_offset, num_missing_items });
} else {
print("... truncated, remaining items: " ++ index_fmt ++ " ...\n", .{num_missing_items});
}
}
// now reverse expected/actual and print again
differ.expected = actual_window;
differ.actual = expected_window;
print("\n============= instead found this: ============== len: {} (0x{X})\n\n", .{ actual.len, actual.len });
if (window_start > 0) {
if (T == u8) {
print("... truncated, start index: " ++ index_fmt ++ " ...\n", .{window_start});
} else {
print("... truncated ...\n", .{});
}
}
differ.write(stderr.writer()) catch {};
if (actual_truncated) {
const end_offset = window_start + actual_window.len;
const num_missing_items = actual.len - (window_start + actual_window.len);
if (T == u8) {
print("... truncated, indexes [" ++ index_fmt ++ "..] not shown, remaining bytes: " ++ index_fmt ++ " ...\n", .{ end_offset, num_missing_items });
} else {
print("... truncated, remaining items: " ++ index_fmt ++ " ...\n", .{num_missing_items});
}
}
print("\n================================================\n\n", .{});
return error.TestExpectedEqual;
}
fn SliceDiffer(comptime T: type) type {
return struct {
start_index: usize,
expected: []const T,
actual: []const T,
ttyconf: std.io.tty.Config,
const Self = @This();
pub fn write(self: Self, writer: anytype) !void {
for (self.expected, 0..) |value, i| {
const full_index = self.start_index + i;
const diff = if (i < self.actual.len) !std.meta.eql(self.actual[i], value) else true;
if (diff) try self.ttyconf.setColor(writer, .red);
if (@typeInfo(T) == .Pointer) {
try writer.print("[{}]{*}: {any}\n", .{ full_index, value, value });
} else {
try writer.print("[{}]: {any}\n", .{ full_index, value });
}
if (diff) try self.ttyconf.setColor(writer, .reset);
}
}
};
}
const BytesDiffer = struct {
expected: []const u8,
actual: []const u8,
ttyconf: std.io.tty.Config,
pub fn write(self: BytesDiffer, writer: anytype) !void {
var expected_iterator = std.mem.window(u8, self.expected, 16, 16);
var row: usize = 0;
while (expected_iterator.next()) |chunk| {
// to avoid having to calculate diffs twice per chunk
var diffs: std.bit_set.IntegerBitSet(16) = .{ .mask = 0 };
for (chunk, 0..) |byte, col| {
const absolute_byte_index = col + row * 16;
const diff = if (absolute_byte_index < self.actual.len) self.actual[absolute_byte_index] != byte else true;
if (diff) diffs.set(col);
try self.writeDiff(writer, "{X:0>2} ", .{byte}, diff);
if (col == 7) try writer.writeByte(' ');
}
try writer.writeByte(' ');
if (chunk.len < 16) {
var missing_columns = (16 - chunk.len) * 3;
if (chunk.len < 8) missing_columns += 1;
try writer.writeByteNTimes(' ', missing_columns);
}
for (chunk, 0..) |byte, col| {
const diff = diffs.isSet(col);
if (std.ascii.isPrint(byte)) {
try self.writeDiff(writer, "{c}", .{byte}, diff);
} else {
// TODO: remove this `if` when https://github.com/ziglang/zig/issues/7600 is fixed
if (self.ttyconf == .windows_api) {
try self.writeDiff(writer, ".", .{}, diff);
continue;
}
// Let's print some common control codes as graphical Unicode symbols.
// We don't want to do this for all control codes because most control codes apart from
// the ones that Zig has escape sequences for are likely not very useful to print as symbols.
switch (byte) {
'\n' => try self.writeDiff(writer, "", .{}, diff),
'\r' => try self.writeDiff(writer, "", .{}, diff),
'\t' => try self.writeDiff(writer, "", .{}, diff),
else => try self.writeDiff(writer, ".", .{}, diff),
}
}
}
try writer.writeByte('\n');
row += 1;
}
}
fn writeDiff(self: BytesDiffer, writer: anytype, comptime fmt: []const u8, args: anytype, diff: bool) !void {
if (diff) try self.ttyconf.setColor(writer, .red);
try writer.print(fmt, args);
if (diff) try self.ttyconf.setColor(writer, .reset);
}
};
test {
try expectEqualSlices(u8, "foo\x00", "foo\x00");
try expectEqualSlices(u16, &[_]u16{ 100, 200, 300, 400 }, &[_]u16{ 100, 200, 300, 400 });
const E = enum { foo, bar };
const S = struct {
v: E,
};
try expectEqualSlices(
S,
&[_]S{ .{ .v = .foo }, .{ .v = .bar }, .{ .v = .foo }, .{ .v = .bar } },
&[_]S{ .{ .v = .foo }, .{ .v = .bar }, .{ .v = .foo }, .{ .v = .bar } },
);
}
/// This function is intended to be used only in tests. Checks that two slices or two arrays are equal,
/// including that their sentinel (if any) are the same. Will error if given another type.
pub fn expectEqualSentinel(comptime T: type, comptime sentinel: T, expected: [:sentinel]const T, actual: [:sentinel]const T) !void {
try expectEqualSlices(T, expected, actual);
const expected_value_sentinel = blk: {
switch (@typeInfo(@TypeOf(expected))) {
.Pointer => {
break :blk expected[expected.len];
},
.Array => |array_info| {
const indexable_outside_of_bounds = @as([]const array_info.child, &expected);
break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len];
},
else => {},
}
};
const actual_value_sentinel = blk: {
switch (@typeInfo(@TypeOf(actual))) {
.Pointer => {
break :blk actual[actual.len];
},
.Array => |array_info| {
const indexable_outside_of_bounds = @as([]const array_info.child, &actual);
break :blk indexable_outside_of_bounds[indexable_outside_of_bounds.len];
},
else => {},
}
};
if (!std.meta.eql(sentinel, expected_value_sentinel)) {
print("expectEqualSentinel: 'expected' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, expected_value_sentinel });
return error.TestExpectedEqual;
}
if (!std.meta.eql(sentinel, actual_value_sentinel)) {
print("expectEqualSentinel: 'actual' sentinel in memory is different from its type sentinel. type sentinel {}, in memory sentinel {}\n", .{ sentinel, actual_value_sentinel });
return error.TestExpectedEqual;
}
}
/// This function is intended to be used only in tests.
/// When `ok` is false, returns a test failure error.
pub fn expect(ok: bool) !void {
if (!ok) return error.TestUnexpectedResult;
}
pub const TmpDir = struct {
dir: std.fs.Dir,
parent_dir: std.fs.Dir,
sub_path: [sub_path_len]u8,
const random_bytes_count = 12;
const sub_path_len = std.fs.base64_encoder.calcSize(random_bytes_count);
pub fn cleanup(self: *TmpDir) void {
self.dir.close();
self.parent_dir.deleteTree(&self.sub_path) catch {};
self.parent_dir.close();
self.* = undefined;
}
};
pub fn tmpDir(opts: std.fs.Dir.OpenDirOptions) TmpDir {
var random_bytes: [TmpDir.random_bytes_count]u8 = undefined;
std.crypto.random.bytes(&random_bytes);
var sub_path: [TmpDir.sub_path_len]u8 = undefined;
_ = std.fs.base64_encoder.encode(&sub_path, &random_bytes);
const cwd = std.fs.cwd();
var cache_dir = cwd.makeOpenPath("zig-cache", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open zig-cache dir");
defer cache_dir.close();
const parent_dir = cache_dir.makeOpenPath("tmp", .{}) catch
@panic("unable to make tmp dir for testing: unable to make and open zig-cache/tmp dir");
const dir = parent_dir.makeOpenPath(&sub_path, opts) catch
@panic("unable to make tmp dir for testing: unable to make and open the tmp dir");
return .{
.dir = dir,
.parent_dir = parent_dir,
.sub_path = sub_path,
};
}
test "expectEqual nested array" {
const a = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
const b = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
try expectEqual(a, b);
}
test "expectEqual vector" {
const a: @Vector(4, u32) = @splat(4);
const b: @Vector(4, u32) = @splat(4);
try expectEqual(a, b);
}
pub fn expectEqualStrings(expected: []const u8, actual: []const u8) !void {
if (std.mem.indexOfDiff(u8, actual, expected)) |diff_index| {
print("\n====== expected this output: =========\n", .{});
printWithVisibleNewlines(expected);
print("\n======== instead found this: =========\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
var diff_line_number: usize = 1;
for (expected[0..diff_index]) |value| {
if (value == '\n') diff_line_number += 1;
}
print("First difference occurs on line {d}:\n", .{diff_line_number});
print("expected:\n", .{});
printIndicatorLine(expected, diff_index);
print("found:\n", .{});
printIndicatorLine(actual, diff_index);
return error.TestExpectedEqual;
}
}
pub fn expectStringStartsWith(actual: []const u8, expected_starts_with: []const u8) !void {
if (std.mem.startsWith(u8, actual, expected_starts_with))
return;
const shortened_actual = if (actual.len >= expected_starts_with.len)
actual[0..expected_starts_with.len]
else
actual;
print("\n====== expected to start with: =========\n", .{});
printWithVisibleNewlines(expected_starts_with);
print("\n====== instead started with: ===========\n", .{});
printWithVisibleNewlines(shortened_actual);
print("\n========= full output: ==============\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
return error.TestExpectedStartsWith;
}
pub fn expectStringEndsWith(actual: []const u8, expected_ends_with: []const u8) !void {
if (std.mem.endsWith(u8, actual, expected_ends_with))
return;
const shortened_actual = if (actual.len >= expected_ends_with.len)
actual[(actual.len - expected_ends_with.len)..]
else
actual;
print("\n====== expected to end with: =========\n", .{});
printWithVisibleNewlines(expected_ends_with);
print("\n====== instead ended with: ===========\n", .{});
printWithVisibleNewlines(shortened_actual);
print("\n========= full output: ==============\n", .{});
printWithVisibleNewlines(actual);
print("\n======================================\n", .{});
return error.TestExpectedEndsWith;
}
/// This function is intended to be used only in tests. When the two values are not
/// deeply equal, prints diagnostics to stderr to show exactly how they are not equal,
/// then returns a test failure error.
/// `actual` and `expected` are coerced to a common type using peer type resolution.
///
/// Deeply equal is defined as follows:
/// Primitive types are deeply equal if they are equal using `==` operator.
/// Struct values are deeply equal if their corresponding fields are deeply equal.
/// Container types(like Array/Slice/Vector) deeply equal when their corresponding elements are deeply equal.
/// Pointer values are deeply equal if values they point to are deeply equal.
///
/// Note: Self-referential structs are supported (e.g. things like std.SinglyLinkedList)
/// but may cause infinite recursion or stack overflow when a container has a pointer to itself.
pub inline fn expectEqualDeep(expected: anytype, actual: anytype) error{TestExpectedEqual}!void {
const T = @TypeOf(expected, actual);
return expectEqualDeepInner(T, expected, actual);
}
fn expectEqualDeepInner(comptime T: type, expected: T, actual: T) error{TestExpectedEqual}!void {
switch (@typeInfo(@TypeOf(actual))) {
.NoReturn,
.Opaque,
.Frame,
.AnyFrame,
=> @compileError("value of type " ++ @typeName(@TypeOf(actual)) ++ " encountered"),
.Undefined,
.Null,
.Void,
=> return,
.Type => {
if (actual != expected) {
print("expected type {s}, found type {s}\n", .{ @typeName(expected), @typeName(actual) });
return error.TestExpectedEqual;
}
},
.Bool,
.Int,
.Float,
.ComptimeFloat,
.ComptimeInt,
.EnumLiteral,
.Enum,
.Fn,
.ErrorSet,
=> {
if (actual != expected) {
print("expected {}, found {}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.Pointer => |pointer| {
switch (pointer.size) {
// We have no idea what is behind those pointers, so the best we can do is `==` check.
.C, .Many => {
if (actual != expected) {
print("expected {*}, found {*}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
.One => {
// Length of those pointers are runtime value, so the best we can do is `==` check.
switch (@typeInfo(pointer.child)) {
.Fn, .Opaque => {
if (actual != expected) {
print("expected {*}, found {*}\n", .{ expected, actual });
return error.TestExpectedEqual;
}
},
else => try expectEqualDeep(expected.*, actual.*),
}
},
.Slice => {
if (expected.len != actual.len) {
print("Slice len not the same, expected {d}, found {d}\n", .{ expected.len, actual.len });
return error.TestExpectedEqual;
}
var i: usize = 0;
while (i < expected.len) : (i += 1) {
expectEqualDeep(expected[i], actual[i]) catch |e| {
print("index {d} incorrect. expected {any}, found {any}\n", .{
i, expected[i], actual[i],
});
return e;
};
}
},
}
},
.Array => |_| {
if (expected.len != actual.len) {
print("Array len not the same, expected {d}, found {d}\n", .{ expected.len, actual.len });
return error.TestExpectedEqual;
}
var i: usize = 0;
while (i < expected.len) : (i += 1) {
expectEqualDeep(expected[i], actual[i]) catch |e| {
print("index {d} incorrect. expected {any}, found {any}\n", .{
i, expected[i], actual[i],
});
return e;
};
}
},
.Vector => |info| {
if (info.len != @typeInfo(@TypeOf(actual)).Vector.len) {
print("Vector len not the same, expected {d}, found {d}\n", .{ info.len, @typeInfo(@TypeOf(actual)).Vector.len });
return error.TestExpectedEqual;
}
var i: usize = 0;
while (i < info.len) : (i += 1) {
expectEqualDeep(expected[i], actual[i]) catch |e| {
print("index {d} incorrect. expected {any}, found {any}\n", .{
i, expected[i], actual[i],
});
return e;
};
}
},
.Struct => |structType| {
inline for (structType.fields) |field| {
expectEqualDeep(@field(expected, field.name), @field(actual, field.name)) catch |e| {
print("Field {s} incorrect. expected {any}, found {any}\n", .{ field.name, @field(expected, field.name), @field(actual, field.name) });
return e;
};
}
},
.Union => |union_info| {
if (union_info.tag_type == null) {
@compileError("Unable to compare untagged union values");
}
const Tag = std.meta.Tag(@TypeOf(expected));
const expectedTag = @as(Tag, expected);
const actualTag = @as(Tag, actual);
try expectEqual(expectedTag, actualTag);
// we only reach this loop if the tags are equal
switch (expected) {
inline else => |val, tag| {
try expectEqualDeep(val, @field(actual, @tagName(tag)));
},
}
},
.Optional => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqualDeep(expected_payload, actual_payload);
} else {
print("expected {any}, found null\n", .{expected_payload});
return error.TestExpectedEqual;
}
} else {
if (actual) |actual_payload| {
print("expected null, found {any}\n", .{actual_payload});
return error.TestExpectedEqual;
}
}
},
.ErrorUnion => {
if (expected) |expected_payload| {
if (actual) |actual_payload| {
try expectEqualDeep(expected_payload, actual_payload);
} else |actual_err| {
print("expected {any}, found {any}\n", .{ expected_payload, actual_err });
return error.TestExpectedEqual;
}
} else |expected_err| {
if (actual) |actual_payload| {
print("expected {any}, found {any}\n", .{ expected_err, actual_payload });
return error.TestExpectedEqual;
} else |actual_err| {
try expectEqualDeep(expected_err, actual_err);
}
}
},
}
}
test "expectEqualDeep primitive type" {
try expectEqualDeep(1, 1);
try expectEqualDeep(true, true);
try expectEqualDeep(1.5, 1.5);
try expectEqualDeep(u8, u8);
try expectEqualDeep(error.Bad, error.Bad);
// optional
{
const foo: ?u32 = 1;
const bar: ?u32 = 1;
try expectEqualDeep(foo, bar);
try expectEqualDeep(?u32, ?u32);
}
// function type
{
const fnType = struct {
fn foo() void {
unreachable;
}
}.foo;
try expectEqualDeep(fnType, fnType);
}
}
test "expectEqualDeep pointer" {
const a = 1;
const b = 1;
try expectEqualDeep(&a, &b);
}
test "expectEqualDeep composite type" {
try expectEqualDeep("abc", "abc");
const s1: []const u8 = "abc";
const s2 = "abcd";
const s3: []const u8 = s2[0..3];
try expectEqualDeep(s1, s3);
const TestStruct = struct { s: []const u8 };
try expectEqualDeep(TestStruct{ .s = "abc" }, TestStruct{ .s = "abc" });
try expectEqualDeep([_][]const u8{ "a", "b", "c" }, [_][]const u8{ "a", "b", "c" });
// vector
try expectEqualDeep(@as(@Vector(4, u32), @splat(4)), @as(@Vector(4, u32), @splat(4)));
// nested array
{
const a = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
const b = [2][2]f32{
[_]f32{ 1.0, 0.0 },
[_]f32{ 0.0, 1.0 },
};
try expectEqualDeep(a, b);
try expectEqualDeep(&a, &b);
}
}
fn printIndicatorLine(source: []const u8, indicator_index: usize) void {
const line_begin_index = if (std.mem.lastIndexOfScalar(u8, source[0..indicator_index], '\n')) |line_begin|
line_begin + 1
else
0;
const line_end_index = if (std.mem.indexOfScalar(u8, source[indicator_index..], '\n')) |line_end|
(indicator_index + line_end)
else
source.len;
printLine(source[line_begin_index..line_end_index]);
for (line_begin_index..indicator_index) |_|
print(" ", .{});
if (indicator_index >= source.len)
print("^ (end of string)\n", .{})
else
print("^ ('\\x{x:0>2}')\n", .{source[indicator_index]});
}
fn printWithVisibleNewlines(source: []const u8) void {
var i: usize = 0;
while (std.mem.indexOfScalar(u8, source[i..], '\n')) |nl| : (i += nl + 1) {
printLine(source[i..][0..nl]);
}
print("{s}␃\n", .{source[i..]}); // End of Text symbol (ETX)
}
fn printLine(line: []const u8) void {
if (line.len != 0) switch (line[line.len - 1]) {
' ', '\t' => return print("{s}⏎\n", .{line}), // Return symbol
else => {},
};
print("{s}\n", .{line});
}
test {
try expectEqualStrings("foo", "foo");
}
/// Exhaustively check that allocation failures within `test_fn` are handled without
/// introducing memory leaks. If used with the `testing.allocator` as the `backing_allocator`,
/// it will also be able to detect double frees, etc (when runtime safety is enabled).
///
/// The provided `test_fn` must have a `std.mem.Allocator` as its first argument,
/// and must have a return type of `!void`. Any extra arguments of `test_fn` can
/// be provided via the `extra_args` tuple.
///
/// Any relevant state shared between runs of `test_fn` *must* be reset within `test_fn`.
///
/// The strategy employed is to:
/// - Run the test function once to get the total number of allocations.
/// - Then, iterate and run the function X more times, incrementing
/// the failing index each iteration (where X is the total number of
/// allocations determined previously)
///
/// Expects that `test_fn` has a deterministic number of memory allocations:
/// - If an allocation was made to fail during a run of `test_fn`, but `test_fn`
/// didn't return `error.OutOfMemory`, then `error.SwallowedOutOfMemoryError`
/// is returned from `checkAllAllocationFailures`. You may want to ignore this
/// depending on whether or not the code you're testing includes some strategies
/// for recovering from `error.OutOfMemory`.
/// - If a run of `test_fn` with an expected allocation failure executes without
/// an allocation failure being induced, then `error.NondeterministicMemoryUsage`
/// is returned. This error means that there are allocation points that won't be
/// tested by the strategy this function employs (that is, there are sometimes more
/// points of allocation than the initial run of `test_fn` detects).
///
/// ---
///
/// Here's an example using a simple test case that will cause a leak when the
/// allocation of `bar` fails (but will pass normally):
///
/// ```zig
/// test {
/// const length: usize = 10;
/// const allocator = std.testing.allocator;
/// var foo = try allocator.alloc(u8, length);
/// var bar = try allocator.alloc(u8, length);
///
/// allocator.free(foo);
/// allocator.free(bar);
/// }
/// ```
///
/// The test case can be converted to something that this function can use by
/// doing:
///
/// ```zig
/// fn testImpl(allocator: std.mem.Allocator, length: usize) !void {
/// var foo = try allocator.alloc(u8, length);
/// var bar = try allocator.alloc(u8, length);
///
/// allocator.free(foo);
/// allocator.free(bar);
/// }
///
/// test {
/// const length: usize = 10;
/// const allocator = std.testing.allocator;
/// try std.testing.checkAllAllocationFailures(allocator, testImpl, .{length});
/// }
/// ```
///
/// Running this test will show that `foo` is leaked when the allocation of
/// `bar` fails. The simplest fix, in this case, would be to use defer like so:
///
/// ```zig
/// fn testImpl(allocator: std.mem.Allocator, length: usize) !void {
/// var foo = try allocator.alloc(u8, length);
/// defer allocator.free(foo);
/// var bar = try allocator.alloc(u8, length);
/// defer allocator.free(bar);
/// }
/// ```
pub fn checkAllAllocationFailures(backing_allocator: std.mem.Allocator, comptime test_fn: anytype, extra_args: anytype) !void {
switch (@typeInfo(@typeInfo(@TypeOf(test_fn)).Fn.return_type.?)) {
.ErrorUnion => |info| {
if (info.payload != void) {
@compileError("Return type must be !void");
}
},
else => @compileError("Return type must be !void"),
}
if (@typeInfo(@TypeOf(extra_args)) != .Struct) {
@compileError("Expected tuple or struct argument, found " ++ @typeName(@TypeOf(extra_args)));
}
const ArgsTuple = std.meta.ArgsTuple(@TypeOf(test_fn));
const fn_args_fields = @typeInfo(ArgsTuple).Struct.fields;
if (fn_args_fields.len == 0 or fn_args_fields[0].type != std.mem.Allocator) {
@compileError("The provided function must have an " ++ @typeName(std.mem.Allocator) ++ " as its first argument");
}
const expected_args_tuple_len = fn_args_fields.len - 1;
if (extra_args.len != expected_args_tuple_len) {
@compileError("The provided function expects " ++ std.fmt.comptimePrint("{d}", .{expected_args_tuple_len}) ++ " extra arguments, but the provided tuple contains " ++ std.fmt.comptimePrint("{d}", .{extra_args.len}));
}
// Setup the tuple that will actually be used with @call (we'll need to insert
// the failing allocator in field @"0" before each @call)
var args: ArgsTuple = undefined;
inline for (@typeInfo(@TypeOf(extra_args)).Struct.fields, 0..) |field, i| {
const arg_i_str = comptime str: {
var str_buf: [100]u8 = undefined;
const args_i = i + 1;
const str_len = std.fmt.formatIntBuf(&str_buf, args_i, 10, .lower, .{});
break :str str_buf[0..str_len];
};
@field(args, arg_i_str) = @field(extra_args, field.name);
}
// Try it once with unlimited memory, make sure it works
const needed_alloc_count = x: {
var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, .{});
args.@"0" = failing_allocator_inst.allocator();
try @call(.auto, test_fn, args);
break :x failing_allocator_inst.alloc_index;
};
var fail_index: usize = 0;
while (fail_index < needed_alloc_count) : (fail_index += 1) {
var failing_allocator_inst = std.testing.FailingAllocator.init(backing_allocator, .{ .fail_index = fail_index });
args.@"0" = failing_allocator_inst.allocator();
if (@call(.auto, test_fn, args)) |_| {
if (failing_allocator_inst.has_induced_failure) {
return error.SwallowedOutOfMemoryError;
} else {
return error.NondeterministicMemoryUsage;
}
} else |err| switch (err) {
error.OutOfMemory => {
if (failing_allocator_inst.allocated_bytes != failing_allocator_inst.freed_bytes) {
print(
"\nfail_index: {d}/{d}\nallocated bytes: {d}\nfreed bytes: {d}\nallocations: {d}\ndeallocations: {d}\nallocation that was made to fail: {}",
.{
fail_index,
needed_alloc_count,
failing_allocator_inst.allocated_bytes,
failing_allocator_inst.freed_bytes,
failing_allocator_inst.allocations,
failing_allocator_inst.deallocations,
failing_allocator_inst.getStackTrace(),
},
);
return error.MemoryLeakDetected;
}
},
else => return err,
}
}
}
/// Given a type, references all the declarations inside, so that the semantic analyzer sees them.
pub fn refAllDecls(comptime T: type) void {
if (!builtin.is_test) return;
inline for (comptime std.meta.declarations(T)) |decl| {
_ = &@field(T, decl.name);
}
}
/// Given a type, recursively references all the declarations inside, so that the semantic analyzer sees them.
/// For deep types, you may use `@setEvalBranchQuota`.
pub fn refAllDeclsRecursive(comptime T: type) void {
if (!builtin.is_test) return;
inline for (comptime std.meta.declarations(T)) |decl| {
if (@TypeOf(@field(T, decl.name)) == type) {
switch (@typeInfo(@field(T, decl.name))) {
.Struct, .Enum, .Union, .Opaque => refAllDeclsRecursive(@field(T, decl.name)),
else => {},
}
}
_ = &@field(T, decl.name);
}
}