zig/lib/std/dwarf/call_frame.zig
2023-07-20 22:58:13 -04:00

395 lines
15 KiB
Zig

const std = @import("../std.zig");
const debug = std.debug;
const leb = @import("../leb128.zig");
const abi = @import("abi.zig");
const dwarf = @import("../dwarf.zig");
// These enum values correspond to the opcode encoding itself, with
// the exception of the opcodes that include data in the opcode itself.
// For those, the enum value is the opcode with the lower 6 bits (the data) masked to 0.
const Opcode = enum(u8) {
// These are placeholders that define the range of vendor-specific opcodes
const lo_user = 0x1c;
const hi_user = 0x3f;
advance_loc = 0x1 << 6,
offset = 0x2 << 6,
restore = 0x3 << 6,
nop = 0x00,
set_loc = 0x01,
advance_loc1 = 0x02,
advance_loc2 = 0x03,
advance_loc4 = 0x04,
offset_extended = 0x05,
restore_extended = 0x06,
undefined = 0x07,
same_value = 0x08,
register = 0x09,
remember_state = 0x0a,
restore_state = 0x0b,
def_cfa = 0x0c,
def_cfa_register = 0x0d,
def_cfa_offset = 0x0e,
def_cfa_expression = 0x0f,
expression = 0x10,
offset_extended_sf = 0x11,
def_cfa_sf = 0x12,
def_cfa_offset_sf = 0x13,
val_offset = 0x14,
val_offset_sf = 0x15,
val_expression = 0x16,
_,
};
const Operand = enum {
opcode_delta,
opcode_register,
uleb128_register,
uleb128_offset,
sleb128_offset,
address,
u8_delta,
u16_delta,
u32_delta,
block,
fn Storage(comptime self: Operand) type {
return switch (self) {
.opcode_delta, .opcode_register => u6,
.uleb128_register => u8,
.uleb128_offset => u64,
.sleb128_offset => i64,
.address => u64,
.u8_delta => u8,
.u16_delta => u16,
.u32_delta => u32,
.block => []const u8,
};
}
fn read(
comptime self: Operand,
reader: anytype,
opcode_value: ?u6,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !Storage(self) {
return switch (self) {
.opcode_delta, .opcode_register => opcode_value orelse return error.InvalidOperand,
.uleb128_register => try leb.readULEB128(u8, reader),
.uleb128_offset => try leb.readULEB128(u64, reader),
.sleb128_offset => try leb.readILEB128(i64, reader),
.address => switch (addr_size_bytes) {
2 => try reader.readInt(u16, endian),
4 => try reader.readInt(u32, endian),
8 => try reader.readInt(u64, endian),
else => return error.InvalidAddrSize,
},
.u8_delta => try reader.readByte(),
.u16_delta => try reader.readInt(u16, endian),
.u32_delta => try reader.readInt(u32, endian),
.block => {
const block_len = try leb.readULEB128(u64, reader);
// TODO: This feels like a kludge, change to FixedBufferStream param?
const block = reader.context.buffer[reader.context.pos..][0..block_len];
reader.context.pos += block_len;
return block;
}
};
}
};
fn InstructionType(comptime definition: anytype) type {
const definition_type = @typeInfo(@TypeOf(definition));
debug.assert(definition_type == .Struct);
const definition_len = definition_type.Struct.fields.len;
comptime var fields: [definition_len]std.builtin.Type.StructField = undefined;
inline for (definition_type.Struct.fields, &fields) |definition_field, *operands_field| {
const opcode = std.enums.nameCast(Operand, @field(definition, definition_field.name));
const storage_type = opcode.Storage();
operands_field.* = .{
.name = definition_field.name,
.type = storage_type,
.default_value = null,
.is_comptime = false,
.alignment = @alignOf(storage_type),
};
}
const InstructionOperands = @Type(.{
.Struct = .{
.layout = .Auto,
.fields = &fields,
.decls = &.{},
.is_tuple = false,
},
});
return struct {
const Self = @This();
operands: InstructionOperands,
pub fn read(reader: anytype, opcode_value: ?u6, addr_size_bytes: u8, endian: std.builtin.Endian) !Self {
var operands: InstructionOperands = undefined;
inline for (definition_type.Struct.fields) |definition_field| {
const operand = comptime std.enums.nameCast(Operand, @field(definition, definition_field.name));
@field(operands, definition_field.name) = try operand.read(reader, opcode_value, addr_size_bytes, endian);
}
return .{ .operands = operands };
}
};
}
pub const Instruction = union(Opcode) {
advance_loc: InstructionType(.{ .delta = .opcode_delta }),
offset: InstructionType(.{ .register = .opcode_register, .offset = .uleb128_offset }),
restore: InstructionType(.{ .register = .opcode_register }),
nop: InstructionType(.{}),
set_loc: InstructionType(.{ .address = .address }),
advance_loc1: InstructionType(.{ .delta = .u8_delta }),
advance_loc2: InstructionType(.{ .delta = .u16_delta }),
advance_loc4: InstructionType(.{ .delta = .u32_delta }),
offset_extended: InstructionType(.{ .register = .uleb128_register, .offset = .uleb128_offset }),
restore_extended: InstructionType(.{ .register = .uleb128_register }),
undefined: InstructionType(.{ .register = .uleb128_register }),
same_value: InstructionType(.{ .register = .uleb128_register }),
register: InstructionType(.{ .register = .uleb128_register, .offset = .uleb128_offset }),
remember_state: InstructionType(.{}),
restore_state: InstructionType(.{}),
def_cfa: InstructionType(.{ .register = .uleb128_register, .offset = .uleb128_offset }),
def_cfa_register: InstructionType(.{ .register = .uleb128_register }),
def_cfa_offset: InstructionType(.{ .offset = .uleb128_offset }),
def_cfa_expression: InstructionType(.{ .block = .block }),
expression: InstructionType(.{ .register = .uleb128_register, .block = .block }),
offset_extended_sf: InstructionType(.{ .register = .uleb128_register, .offset = .sleb128_offset }),
def_cfa_sf: InstructionType(.{ .register = .uleb128_register, .offset = .sleb128_offset }),
def_cfa_offset_sf: InstructionType(.{ .offset = .sleb128_offset }),
val_offset: InstructionType(.{ .a = .uleb128_offset, .b = .uleb128_offset }),
val_offset_sf: InstructionType(.{ .a = .uleb128_offset, .b = .sleb128_offset }),
val_expression: InstructionType(.{ .a = .uleb128_offset, .block = .block }),
pub fn read(reader: anytype, addr_size_bytes: u8, endian: std.builtin.Endian) !Instruction {
const opcode = try reader.readByte();
const upper = opcode & 0b11000000;
return switch (upper) {
inline @enumToInt(Opcode.advance_loc), @enumToInt(Opcode.offset), @enumToInt(Opcode.restore) => |u| @unionInit(
Instruction,
@tagName(@intToEnum(Opcode, u)),
try std.meta.TagPayload(Instruction, @intToEnum(Opcode, u)).read(reader, @intCast(u6, opcode & 0b111111), addr_size_bytes, endian),
),
0 => blk: {
inline for (@typeInfo(Opcode).Enum.fields) |field| {
if (field.value == opcode) {
break :blk @unionInit(
Instruction,
@tagName(@intToEnum(Opcode, field.value)),
try std.meta.TagPayload(Instruction, @intToEnum(Opcode, field.value)).read(reader, null, addr_size_bytes, endian),
);
}
}
break :blk error.UnknownOpcode;
},
else => error.UnknownOpcode,
};
}
pub fn writeOperands(self: Instruction, writer: anytype, cie: dwarf.CommonInformationEntry, arch: ?std.Target.Cpu.Arch) !void {
switch (self) {
inline .advance_loc, .advance_loc1, .advance_loc2, .advance_loc4 => |i| try writer.print("{}", .{ i.operands.delta * cie.code_alignment_factor }),
.offset => |i| {
try abi.writeRegisterName(writer, arch, i.operands.register);
try writer.print(" {}", .{ @intCast(i64, i.operands.offset) * cie.data_alignment_factor });
},
.restore => {},
.nop => {},
.set_loc => {},
.offset_extended => {},
.restore_extended => {},
.undefined => {},
.same_value => {},
.register => {},
.remember_state => {},
.restore_state => {},
.def_cfa => |i| {
try abi.writeRegisterName(writer, arch, i.operands.register);
try writer.print(" {}", .{ fmtOffset(@intCast(i64, i.operands.offset)) });
},
.def_cfa_register => {},
.def_cfa_offset => |i| {
try writer.print("{}", .{ fmtOffset(@intCast(i64, i.operands.offset)) });
},
.def_cfa_expression => |i| {
try writer.print("TODO(parse expressions data {x})", .{ std.fmt.fmtSliceHexLower(i.operands.block) });
},
.expression => {},
.offset_extended_sf => {},
.def_cfa_sf => {},
.def_cfa_offset_sf => {},
.val_offset => {},
.val_offset_sf => {},
.val_expression => {},
}
}
};
fn formatOffset(data: i64, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = fmt;
if (data >= 0) try writer.writeByte('+');
return std.fmt.formatInt(data, 10, .lower, options, writer);
}
fn fmtOffset(offset: i64) std.fmt.Formatter(formatOffset) {
return .{ .data = offset };
}
/// See section 6.4.1 of the DWARF5 specification
pub const VirtualMachine = struct {
const RegisterRule = union(enum) {
undefined: void,
same_value: void,
offset: i64,
val_offset: i64,
register: u8,
expression: []const u8,
val_expression: []const u8,
architectural: void,
};
const Column = struct {
register: u8 = undefined,
rule: RegisterRule = .{ .undefined = {} },
pub fn writeRule(self: Column, writer: anytype, is_cfa: bool, arch: ?std.Target.Cpu.Arch) !void {
if (is_cfa) {
try writer.writeAll("CFA");
} else {
try abi.writeRegisterName(writer, arch, self.register);
}
try writer.writeByte('=');
switch (self.rule) {
.undefined => {},
.same_value => try writer.writeAll("S"),
.offset => |offset| {
if (is_cfa) {
try abi.writeRegisterName(writer, arch, self.register);
try writer.print("{}", .{ fmtOffset(offset) });
} else {
try writer.print("[CFA{}]", .{ fmtOffset(offset) });
}
},
.val_offset => |offset| {
if (is_cfa) {
try abi.writeRegisterName(writer, arch, self.register);
try writer.print("{}", .{ fmtOffset(offset) });
} else {
try writer.print("CFA{}", .{ fmtOffset(offset) });
}
},
.register => |register| try abi.writeRegisterName(writer, arch, register),
.expression => try writer.writeAll("TODO(expression)"),
.val_expression => try writer.writeAll("TODO(val_expression)"),
.architectural => try writer.writeAll("TODO(architectural)"),
}
}
};
pub const Row = struct {
/// Offset from pc_begin
offset: u64 = 0,
cfa: Column = .{},
/// Index into `columns` of the first column in this row
columns_start: usize = undefined,
columns_len: u8 = 0,
};
rows: std.ArrayListUnmanaged(Row) = .{},
columns: std.ArrayListUnmanaged(Column) = .{},
current_row: Row = .{},
pub fn reset(self: *VirtualMachine) void {
self.rows.clearRetainingCapacity();
self.columns.clearRetainingCapacity();
self.current_row = .{};
}
pub fn deinit(self: *VirtualMachine, allocator: std.mem.Allocator) void {
self.rows.deinit(allocator);
self.columns.deinit(allocator);
self.* = undefined;
}
pub fn getColumns(self: VirtualMachine, row: Row) []Column {
return self.columns.items[row.columns_start..][0..row.columns_len];
}
fn getOrAddColumn(self: *VirtualMachine, allocator: std.mem.Allocator, register: u8) !*Column {
for (self.getColumns(self.current_row)) |*c| {
if (c.register == register) return c;
}
if (self.current_row.columns_len == 0) {
self.current_row.columns_start = self.columns.items.len;
}
self.current_row.columns_len += 1;
const column = try self.columns.addOne(allocator);
column.* = .{
.register = register,
};
return column;
}
pub fn step(self: *VirtualMachine, allocator: std.mem.Allocator, cie: dwarf.CommonInformationEntry, instruction: Instruction) !void {
switch (instruction) {
inline .advance_loc, .advance_loc1, .advance_loc2, .advance_loc4 => |i| {
self.current_row.offset += i.operands.delta;
},
.offset => |i| {
const column = try self.getOrAddColumn(allocator, i.operands.register);
column.rule = .{ .offset = @intCast(i64, i.operands.offset) * cie.data_alignment_factor };
},
.restore => {},
.nop => {},
.set_loc => {},
.offset_extended => {},
.restore_extended => {},
.undefined => {},
.same_value => {},
.register => {},
.remember_state => {},
.restore_state => {},
.def_cfa => |i| {
self.current_row.cfa = .{
.register = i.operands.register,
.rule = .{ .offset = @intCast(i64, i.operands.offset) },
};
},
.def_cfa_register => {},
.def_cfa_offset => |i| {
self.current_row.cfa.rule = .{
.offset = @intCast(i64, i.operands.offset)
};
},
.def_cfa_expression => {},
.expression => {},
.offset_extended_sf => {},
.def_cfa_sf => {},
.def_cfa_offset_sf => {},
.val_offset => {},
.val_offset_sf => {},
.val_expression => {},
}
}
};