zig/lib/std/dwarf/call_frame.zig

686 lines
26 KiB
Zig

const builtin = @import("builtin");
const std = @import("../std.zig");
const mem = std.mem;
const debug = std.debug;
const leb = std.leb;
const dwarf = std.dwarf;
const abi = dwarf.abi;
const expressions = dwarf.expressions;
const assert = std.debug.assert;
const Opcode = enum(u8) {
advance_loc = 0x1 << 6,
offset = 0x2 << 6,
restore = 0x3 << 6,
nop = 0x00,
set_loc = 0x01,
advance_loc1 = 0x02,
advance_loc2 = 0x03,
advance_loc4 = 0x04,
offset_extended = 0x05,
restore_extended = 0x06,
undefined = 0x07,
same_value = 0x08,
register = 0x09,
remember_state = 0x0a,
restore_state = 0x0b,
def_cfa = 0x0c,
def_cfa_register = 0x0d,
def_cfa_offset = 0x0e,
def_cfa_expression = 0x0f,
expression = 0x10,
offset_extended_sf = 0x11,
def_cfa_sf = 0x12,
def_cfa_offset_sf = 0x13,
val_offset = 0x14,
val_offset_sf = 0x15,
val_expression = 0x16,
// These opcodes encode an operand in the lower 6 bits of the opcode itself
pub const lo_inline = @intFromEnum(Opcode.advance_loc);
pub const hi_inline = @intFromEnum(Opcode.restore) | 0b111111;
// These opcodes are trailed by zero or more operands
pub const lo_reserved = @intFromEnum(Opcode.nop);
pub const hi_reserved = @intFromEnum(Opcode.val_expression);
// Vendor-specific opcodes
pub const lo_user = 0x1c;
pub const hi_user = 0x3f;
};
fn readBlock(stream: *std.io.FixedBufferStream([]const u8)) ![]const u8 {
const reader = stream.reader();
const block_len = try leb.readULEB128(usize, reader);
if (stream.pos + block_len > stream.buffer.len) return error.InvalidOperand;
const block = stream.buffer[stream.pos..][0..block_len];
reader.context.pos += block_len;
return block;
}
pub const Instruction = union(Opcode) {
advance_loc: struct {
delta: u8,
},
offset: struct {
register: u8,
offset: u64,
},
offset_extended: struct {
register: u8,
offset: u64,
},
restore: struct {
register: u8,
},
restore_extended: struct {
register: u8,
},
nop: void,
set_loc: struct {
address: u64,
},
advance_loc1: struct {
delta: u8,
},
advance_loc2: struct {
delta: u16,
},
advance_loc4: struct {
delta: u32,
},
undefined: struct {
register: u8,
},
same_value: struct {
register: u8,
},
register: struct {
register: u8,
target_register: u8,
},
remember_state: void,
restore_state: void,
def_cfa: struct {
register: u8,
offset: u64,
},
def_cfa_register: struct {
register: u8,
},
def_cfa_offset: struct {
offset: u64,
},
def_cfa_expression: struct {
block: []const u8,
},
expression: struct {
register: u8,
block: []const u8,
},
offset_extended_sf: struct {
register: u8,
offset: i64,
},
def_cfa_sf: struct {
register: u8,
offset: i64,
},
def_cfa_offset_sf: struct {
offset: i64,
},
val_offset: struct {
register: u8,
offset: u64,
},
val_offset_sf: struct {
register: u8,
offset: i64,
},
val_expression: struct {
register: u8,
block: []const u8,
},
pub fn read(
stream: *std.io.FixedBufferStream([]const u8),
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !Instruction {
const reader = stream.reader();
switch (try reader.readByte()) {
Opcode.lo_inline...Opcode.hi_inline => |opcode| {
const e: Opcode = @enumFromInt(opcode & 0b11000000);
const value: u6 = @intCast(opcode & 0b111111);
return switch (e) {
.advance_loc => .{
.advance_loc = .{ .delta = value },
},
.offset => .{
.offset = .{
.register = value,
.offset = try leb.readULEB128(u64, reader),
},
},
.restore => .{
.restore = .{ .register = value },
},
else => unreachable,
};
},
Opcode.lo_reserved...Opcode.hi_reserved => |opcode| {
const e: Opcode = @enumFromInt(opcode);
return switch (e) {
.advance_loc,
.offset,
.restore,
=> unreachable,
.nop => .{ .nop = {} },
.set_loc => .{
.set_loc = .{
.address = switch (addr_size_bytes) {
2 => try reader.readInt(u16, endian),
4 => try reader.readInt(u32, endian),
8 => try reader.readInt(u64, endian),
else => return error.InvalidAddrSize,
},
},
},
.advance_loc1 => .{
.advance_loc1 = .{ .delta = try reader.readByte() },
},
.advance_loc2 => .{
.advance_loc2 = .{ .delta = try reader.readInt(u16, endian) },
},
.advance_loc4 => .{
.advance_loc4 = .{ .delta = try reader.readInt(u32, endian) },
},
.offset_extended => .{
.offset_extended = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readULEB128(u64, reader),
},
},
.restore_extended => .{
.restore_extended = .{
.register = try leb.readULEB128(u8, reader),
},
},
.undefined => .{
.undefined = .{
.register = try leb.readULEB128(u8, reader),
},
},
.same_value => .{
.same_value = .{
.register = try leb.readULEB128(u8, reader),
},
},
.register => .{
.register = .{
.register = try leb.readULEB128(u8, reader),
.target_register = try leb.readULEB128(u8, reader),
},
},
.remember_state => .{ .remember_state = {} },
.restore_state => .{ .restore_state = {} },
.def_cfa => .{
.def_cfa = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readULEB128(u64, reader),
},
},
.def_cfa_register => .{
.def_cfa_register = .{
.register = try leb.readULEB128(u8, reader),
},
},
.def_cfa_offset => .{
.def_cfa_offset = .{
.offset = try leb.readULEB128(u64, reader),
},
},
.def_cfa_expression => .{
.def_cfa_expression = .{
.block = try readBlock(stream),
},
},
.expression => .{
.expression = .{
.register = try leb.readULEB128(u8, reader),
.block = try readBlock(stream),
},
},
.offset_extended_sf => .{
.offset_extended_sf = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readILEB128(i64, reader),
},
},
.def_cfa_sf => .{
.def_cfa_sf = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readILEB128(i64, reader),
},
},
.def_cfa_offset_sf => .{
.def_cfa_offset_sf = .{
.offset = try leb.readILEB128(i64, reader),
},
},
.val_offset => .{
.val_offset = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readULEB128(u64, reader),
},
},
.val_offset_sf => .{
.val_offset_sf = .{
.register = try leb.readULEB128(u8, reader),
.offset = try leb.readILEB128(i64, reader),
},
},
.val_expression => .{
.val_expression = .{
.register = try leb.readULEB128(u8, reader),
.block = try readBlock(stream),
},
},
};
},
Opcode.lo_user...Opcode.hi_user => return error.UnimplementedUserOpcode,
else => return error.InvalidOpcode,
}
}
};
/// Since register rules are applied (usually) during a panic,
/// checked addition / subtraction is used so that we can return
/// an error and fall back to FP-based unwinding.
pub fn applyOffset(base: usize, offset: i64) !usize {
return if (offset >= 0)
try std.math.add(usize, base, @as(usize, @intCast(offset)))
else
try std.math.sub(usize, base, @as(usize, @intCast(-offset)));
}
/// This is a virtual machine that runs DWARF call frame instructions.
pub const VirtualMachine = struct {
/// See section 6.4.1 of the DWARF5 specification for details on each
const RegisterRule = union(enum) {
// The spec says that the default rule for each column is the undefined rule.
// However, it also allows ABI / compiler authors to specify alternate defaults, so
// there is a distinction made here.
default: void,
undefined: void,
same_value: void,
// offset(N)
offset: i64,
// val_offset(N)
val_offset: i64,
// register(R)
register: u8,
// expression(E)
expression: []const u8,
// val_expression(E)
val_expression: []const u8,
// Augmenter-defined rule
architectural: void,
};
/// Each row contains unwinding rules for a set of registers.
pub const Row = struct {
/// Offset from `FrameDescriptionEntry.pc_begin`
offset: u64 = 0,
/// Special-case column that defines the CFA (Canonical Frame Address) rule.
/// The register field of this column defines the register that CFA is derived from.
cfa: Column = .{},
/// The register fields in these columns define the register the rule applies to.
columns: ColumnRange = .{},
/// Indicates that the next write to any column in this row needs to copy
/// the backing column storage first, as it may be referenced by previous rows.
copy_on_write: bool = false,
};
pub const Column = struct {
register: ?u8 = null,
rule: RegisterRule = .{ .default = {} },
/// Resolves the register rule and places the result into `out` (see dwarf.abi.regBytes)
pub fn resolveValue(
self: Column,
context: *dwarf.UnwindContext,
expression_context: dwarf.expressions.ExpressionContext,
out: []u8,
) !void {
switch (self.rule) {
.default => {
const register = self.register orelse return error.InvalidRegister;
try abi.getRegDefaultValue(register, context, out);
},
.undefined => {
@memset(out, undefined);
},
.same_value => {
// TODO: This copy could be eliminated if callers always copy the state then call this function to update it
const register = self.register orelse return error.InvalidRegister;
const src = try abi.regBytes(context.thread_context, register, context.reg_context);
if (src.len != out.len) return error.RegisterSizeMismatch;
@memcpy(out, src);
},
.offset => |offset| {
if (context.cfa) |cfa| {
const addr = try applyOffset(cfa, offset);
if (expression_context.isValidMemory) |isValidMemory| if (!isValidMemory(addr)) return error.InvalidAddress;
const ptr: *const usize = @ptrFromInt(addr);
mem.writeIntSliceNative(usize, out, ptr.*);
} else return error.InvalidCFA;
},
.val_offset => |offset| {
if (context.cfa) |cfa| {
mem.writeIntSliceNative(usize, out, try applyOffset(cfa, offset));
} else return error.InvalidCFA;
},
.register => |register| {
const src = try abi.regBytes(context.thread_context, register, context.reg_context);
if (src.len != out.len) return error.RegisterSizeMismatch;
@memcpy(out, try abi.regBytes(context.thread_context, register, context.reg_context));
},
.expression => |expression| {
context.stack_machine.reset();
const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?);
const addr = if (value) |v| blk: {
if (v != .generic) return error.InvalidExpressionValue;
break :blk v.generic;
} else return error.NoExpressionValue;
if (!context.isValidMemory(addr)) return error.InvalidExpressionAddress;
const ptr: *usize = @ptrFromInt(addr);
mem.writeIntSliceNative(usize, out, ptr.*);
},
.val_expression => |expression| {
context.stack_machine.reset();
const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?);
if (value) |v| {
if (v != .generic) return error.InvalidExpressionValue;
mem.writeIntSliceNative(usize, out, v.generic);
} else return error.NoExpressionValue;
},
.architectural => return error.UnimplementedRegisterRule,
}
}
};
const ColumnRange = struct {
/// Index into `columns` of the first column in this row.
start: usize = undefined,
len: u8 = 0,
};
columns: std.ArrayListUnmanaged(Column) = .{},
stack: std.ArrayListUnmanaged(ColumnRange) = .{},
current_row: Row = .{},
/// The result of executing the CIE's initial_instructions
cie_row: ?Row = null,
pub fn deinit(self: *VirtualMachine, allocator: std.mem.Allocator) void {
self.stack.deinit(allocator);
self.columns.deinit(allocator);
self.* = undefined;
}
pub fn reset(self: *VirtualMachine) void {
self.stack.clearRetainingCapacity();
self.columns.clearRetainingCapacity();
self.current_row = .{};
self.cie_row = null;
}
/// Return a slice backed by the row's non-CFA columns
pub fn rowColumns(self: VirtualMachine, row: Row) []Column {
if (row.columns.len == 0) return &.{};
return self.columns.items[row.columns.start..][0..row.columns.len];
}
/// Either retrieves or adds a column for `register` (non-CFA) in the current row.
fn getOrAddColumn(self: *VirtualMachine, allocator: std.mem.Allocator, register: u8) !*Column {
for (self.rowColumns(self.current_row)) |*c| {
if (c.register == register) return c;
}
if (self.current_row.columns.len == 0) {
self.current_row.columns.start = self.columns.items.len;
}
self.current_row.columns.len += 1;
const column = try self.columns.addOne(allocator);
column.* = .{
.register = register,
};
return column;
}
/// Runs the CIE instructions, then the FDE instructions. Execution halts
/// once the row that corresponds to `pc` is known, and the row is returned.
pub fn runTo(
self: *VirtualMachine,
allocator: std.mem.Allocator,
pc: u64,
cie: dwarf.CommonInformationEntry,
fde: dwarf.FrameDescriptionEntry,
addr_size_bytes: u8,
endian: std.builtin.Endian,
) !Row {
assert(self.cie_row == null);
if (pc < fde.pc_begin or pc >= fde.pc_begin + fde.pc_range) return error.AddressOutOfRange;
var prev_row: Row = self.current_row;
var cie_stream = std.io.fixedBufferStream(cie.initial_instructions);
var fde_stream = std.io.fixedBufferStream(fde.instructions);
var streams = [_]*std.io.FixedBufferStream([]const u8){
&cie_stream,
&fde_stream,
};
for (&streams, 0..) |stream, i| {
while (stream.pos < stream.buffer.len) {
const instruction = try dwarf.call_frame.Instruction.read(stream, addr_size_bytes, endian);
prev_row = try self.step(allocator, cie, i == 0, instruction);
if (pc < fde.pc_begin + self.current_row.offset) return prev_row;
}
}
return self.current_row;
}
pub fn runToNative(
self: *VirtualMachine,
allocator: std.mem.Allocator,
pc: u64,
cie: dwarf.CommonInformationEntry,
fde: dwarf.FrameDescriptionEntry,
) !Row {
return self.runTo(allocator, pc, cie, fde, @sizeOf(usize), builtin.target.cpu.arch.endian());
}
fn resolveCopyOnWrite(self: *VirtualMachine, allocator: std.mem.Allocator) !void {
if (!self.current_row.copy_on_write) return;
const new_start = self.columns.items.len;
if (self.current_row.columns.len > 0) {
try self.columns.ensureUnusedCapacity(allocator, self.current_row.columns.len);
self.columns.appendSliceAssumeCapacity(self.rowColumns(self.current_row));
self.current_row.columns.start = new_start;
}
}
/// Executes a single instruction.
/// If this instruction is from the CIE, `is_initial` should be set.
/// Returns the value of `current_row` before executing this instruction.
pub fn step(
self: *VirtualMachine,
allocator: std.mem.Allocator,
cie: dwarf.CommonInformationEntry,
is_initial: bool,
instruction: Instruction,
) !Row {
// CIE instructions must be run before FDE instructions
assert(!is_initial or self.cie_row == null);
if (!is_initial and self.cie_row == null) {
self.cie_row = self.current_row;
self.current_row.copy_on_write = true;
}
const prev_row = self.current_row;
switch (instruction) {
.set_loc => |i| {
if (i.address <= self.current_row.offset) return error.InvalidOperation;
// TODO: Check cie.segment_selector_size != 0 for DWARFV4
self.current_row.offset = i.address;
},
inline .advance_loc,
.advance_loc1,
.advance_loc2,
.advance_loc4,
=> |i| {
self.current_row.offset += i.delta * cie.code_alignment_factor;
self.current_row.copy_on_write = true;
},
inline .offset,
.offset_extended,
.offset_extended_sf,
=> |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor };
},
inline .restore,
.restore_extended,
=> |i| {
try self.resolveCopyOnWrite(allocator);
if (self.cie_row) |cie_row| {
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = for (self.rowColumns(cie_row)) |cie_column| {
if (cie_column.register == i.register) break cie_column.rule;
} else .{ .default = {} };
} else return error.InvalidOperation;
},
.nop => {},
.undefined => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .undefined = {} };
},
.same_value => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .same_value = {} };
},
.register => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{ .register = i.target_register };
},
.remember_state => {
try self.stack.append(allocator, self.current_row.columns);
self.current_row.copy_on_write = true;
},
.restore_state => {
const restored_columns = self.stack.popOrNull() orelse return error.InvalidOperation;
self.columns.shrinkRetainingCapacity(self.columns.items.len - self.current_row.columns.len);
try self.columns.ensureUnusedCapacity(allocator, restored_columns.len);
self.current_row.columns.start = self.columns.items.len;
self.current_row.columns.len = restored_columns.len;
self.columns.appendSliceAssumeCapacity(self.columns.items[restored_columns.start..][0..restored_columns.len]);
},
.def_cfa => |i| {
try self.resolveCopyOnWrite(allocator);
self.current_row.cfa = .{
.register = i.register,
.rule = .{ .val_offset = @intCast(i.offset) },
};
},
.def_cfa_sf => |i| {
try self.resolveCopyOnWrite(allocator);
self.current_row.cfa = .{
.register = i.register,
.rule = .{ .val_offset = i.offset * cie.data_alignment_factor },
};
},
.def_cfa_register => |i| {
try self.resolveCopyOnWrite(allocator);
if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation;
self.current_row.cfa.register = i.register;
},
.def_cfa_offset => |i| {
try self.resolveCopyOnWrite(allocator);
if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation;
self.current_row.cfa.rule = .{
.val_offset = @intCast(i.offset),
};
},
.def_cfa_offset_sf => |i| {
try self.resolveCopyOnWrite(allocator);
if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation;
self.current_row.cfa.rule = .{
.val_offset = i.offset * cie.data_alignment_factor,
};
},
.def_cfa_expression => |i| {
try self.resolveCopyOnWrite(allocator);
self.current_row.cfa.register = undefined;
self.current_row.cfa.rule = .{
.expression = i.block,
};
},
.expression => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.expression = i.block,
};
},
.val_offset => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.val_offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor,
};
},
.val_offset_sf => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.val_offset = i.offset * cie.data_alignment_factor,
};
},
.val_expression => |i| {
try self.resolveCopyOnWrite(allocator);
const column = try self.getOrAddColumn(allocator, i.register);
column.rule = .{
.val_expression = i.block,
};
},
}
return prev_row;
}
};