mirror of
https://github.com/ziglang/zig.git
synced 2024-11-27 23:52:31 +00:00
c50f33b111
The Zig LLVM backend emits calls to softfloat methods with the "standard compiler-rt" names. Rather than add complexity to the backend and have to synchronize the naming scheme across all targets, the simplest fix is just to export these symbols under both the "standard" and the platform-specific naming convention.
197 lines
6.1 KiB
Zig
197 lines
6.1 KiB
Zig
//! Ported from musl, which is licensed under the MIT license:
|
|
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//!
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/math/lnf.c
|
|
//! https://git.musl-libc.org/cgit/musl/tree/src/math/ln.c
|
|
|
|
const std = @import("std");
|
|
const builtin = @import("builtin");
|
|
const math = std.math;
|
|
const testing = std.testing;
|
|
const arch = builtin.cpu.arch;
|
|
const common = @import("common.zig");
|
|
|
|
pub const panic = common.panic;
|
|
|
|
comptime {
|
|
@export(__logh, .{ .name = "__logh", .linkage = common.linkage });
|
|
@export(logf, .{ .name = "logf", .linkage = common.linkage });
|
|
@export(log, .{ .name = "log", .linkage = common.linkage });
|
|
@export(__logx, .{ .name = "__logx", .linkage = common.linkage });
|
|
if (common.want_ppc_abi) {
|
|
@export(logq, .{ .name = "logf128", .linkage = common.linkage });
|
|
}
|
|
@export(logq, .{ .name = "logq", .linkage = common.linkage });
|
|
@export(logl, .{ .name = "logl", .linkage = common.linkage });
|
|
}
|
|
|
|
pub fn __logh(a: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, logf(a));
|
|
}
|
|
|
|
pub fn logf(x_: f32) callconv(.C) f32 {
|
|
const ln2_hi: f32 = 6.9313812256e-01;
|
|
const ln2_lo: f32 = 9.0580006145e-06;
|
|
const Lg1: f32 = 0xaaaaaa.0p-24;
|
|
const Lg2: f32 = 0xccce13.0p-25;
|
|
const Lg3: f32 = 0x91e9ee.0p-25;
|
|
const Lg4: f32 = 0xf89e26.0p-26;
|
|
|
|
var x = x_;
|
|
var ix = @bitCast(u32, x);
|
|
var k: i32 = 0;
|
|
|
|
// x < 2^(-126)
|
|
if (ix < 0x00800000 or ix >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log(-#) = nan
|
|
if (ix >> 31 != 0) {
|
|
return math.nan(f32);
|
|
}
|
|
|
|
// subnormal, scale x
|
|
k -= 25;
|
|
x *= 0x1.0p25;
|
|
ix = @bitCast(u32, x);
|
|
} else if (ix >= 0x7F800000) {
|
|
return x;
|
|
} else if (ix == 0x3F800000) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
ix += 0x3F800000 - 0x3F3504F3;
|
|
k += @intCast(i32, ix >> 23) - 0x7F;
|
|
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
|
|
x = @bitCast(f32, ix);
|
|
|
|
const f = x - 1.0;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * Lg4);
|
|
const t2 = z * (Lg1 + w * Lg3);
|
|
const R = t2 + t1;
|
|
const hfsq = 0.5 * f * f;
|
|
const dk = @intToFloat(f32, k);
|
|
|
|
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
|
|
}
|
|
|
|
pub fn log(x_: f64) callconv(.C) f64 {
|
|
const ln2_hi: f64 = 6.93147180369123816490e-01;
|
|
const ln2_lo: f64 = 1.90821492927058770002e-10;
|
|
const Lg1: f64 = 6.666666666666735130e-01;
|
|
const Lg2: f64 = 3.999999999940941908e-01;
|
|
const Lg3: f64 = 2.857142874366239149e-01;
|
|
const Lg4: f64 = 2.222219843214978396e-01;
|
|
const Lg5: f64 = 1.818357216161805012e-01;
|
|
const Lg6: f64 = 1.531383769920937332e-01;
|
|
const Lg7: f64 = 1.479819860511658591e-01;
|
|
|
|
var x = x_;
|
|
var ix = @bitCast(u64, x);
|
|
var hx = @intCast(u32, ix >> 32);
|
|
var k: i32 = 0;
|
|
|
|
if (hx < 0x00100000 or hx >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f64);
|
|
}
|
|
// log(-#) = nan
|
|
if (hx >> 31 != 0) {
|
|
return math.nan(f64);
|
|
}
|
|
|
|
// subnormal, scale x
|
|
k -= 54;
|
|
x *= 0x1.0p54;
|
|
hx = @intCast(u32, @bitCast(u64, ix) >> 32);
|
|
} else if (hx >= 0x7FF00000) {
|
|
return x;
|
|
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
hx += 0x3FF00000 - 0x3FE6A09E;
|
|
k += @intCast(i32, hx >> 20) - 0x3FF;
|
|
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
|
|
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
|
|
x = @bitCast(f64, ix);
|
|
|
|
const f = x - 1.0;
|
|
const hfsq = 0.5 * f * f;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
|
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
|
const R = t2 + t1;
|
|
const dk = @intToFloat(f64, k);
|
|
|
|
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
|
|
}
|
|
|
|
pub fn __logx(a: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, logq(a));
|
|
}
|
|
|
|
pub fn logq(a: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return log(@floatCast(f64, a));
|
|
}
|
|
|
|
pub fn logl(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __logh(x),
|
|
32 => return logf(x),
|
|
64 => return log(x),
|
|
80 => return __logx(x),
|
|
128 => return logq(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "ln32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try testing.expect(math.approxEqAbs(f32, logf(0.2), -1.609438, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, logf(0.8923), -0.113953, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, logf(1.5), 0.405465, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, logf(37.45), 3.623007, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, logf(89.123), 4.490017, epsilon));
|
|
try testing.expect(math.approxEqAbs(f32, logf(123123.234375), 11.720941, epsilon));
|
|
}
|
|
|
|
test "ln64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try testing.expect(math.approxEqAbs(f64, log(0.2), -1.609438, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log(0.8923), -0.113953, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log(1.5), 0.405465, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log(37.45), 3.623007, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log(89.123), 4.490017, epsilon));
|
|
try testing.expect(math.approxEqAbs(f64, log(123123.234375), 11.720941, epsilon));
|
|
}
|
|
|
|
test "ln32.special" {
|
|
try testing.expect(math.isPositiveInf(logf(math.inf(f32))));
|
|
try testing.expect(math.isNegativeInf(logf(0.0)));
|
|
try testing.expect(math.isNan(logf(-1.0)));
|
|
try testing.expect(math.isNan(logf(math.nan(f32))));
|
|
}
|
|
|
|
test "ln64.special" {
|
|
try testing.expect(math.isPositiveInf(log(math.inf(f64))));
|
|
try testing.expect(math.isNegativeInf(log(0.0)));
|
|
try testing.expect(math.isNan(log(-1.0)));
|
|
try testing.expect(math.isNan(log(math.nan(f64))));
|
|
}
|